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Abstract—We consider a cache network in which intermediate
nodes equipped with caches can serve content requests. We
model this network as a universally stable queuing system,
in which packets carrying identical responses are consolidated
before being forwarded downstream. We refer to resulting queues
as M/M/1c or counting queues, as consolidated packets carry
a counter indicating the packet’s multiplicity. Cache networks
comprising such queues are hard to analyze; we propose two
approximations: one via M/M/∞ queues, and one based on M/M/1c
queues under the assumption of Poisson arrivals. We show that,
in both cases, the problem of jointly determining (a) content
placements and (b) service rates admits a poly-time, 1 − 1/e
approximation algorithm. Numerical evaluations indicate that
both approximations yield good solutions in practice, significantly
outperforming competitors.

Index Terms—DR-submodularity, cache networks, Jackson
networks

I. INTRODUCTION

We consider a network of caches, in which intermediate
nodes store requested contents and can serve content requests.
Cache networks are a natural abstraction for many applica-
tions, including information-centric networks [1]–[3], content
delivery networks [4]–[6], and peer-to-peer networks [7], [8].
A series of recent efforts focus on the problem of cache
network design, describing algorithms for placing contents in
caches in order to minimize routing costs [9]–[13].

In most prior work, routing costs are modeled via a linear
function of traffic in each edge, which does not capture,
e.g., delays due to queuing. A recent paper by Mahdian et
al. [13] addresses this limitation by considering so-called
Kelly cache networks, i.e., cache networks whose links are
associated with M/M/1 queues. This formulation has several
advantages. First, it allows the authors to capture queuing costs
in their cache network design. Second, the system is a Kelly
network [14] and, hence, its steady-state distribution is easy to
characterize. Unfortunately, these modelling advantages come
at the expense of realism. In M/M/1 queues, packets carrying
the same content are queued and served separately. This would
not happen in a real network, in which packets carrying
identical content would be used to serve multiple requests. As
a side-effect of this modeling distortion, networks studied by
Mahdian et al. can become unstable: queue sizes can grow to
infinity, congested with packets containing identical content.

In this work, we address this problem by considering a
new type of queue, which we refer to as a counting queue.
When packets containing identical content arrive in such a
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queue, they merge, resulting in a single packet carrying the
same content. The header of this packet contains a counter
with the “cardinality” of merged packets it represents. Merged
packets are forwarded towards the request source, serving
multiple requests via a single response. Counting queues,
which we denote by M/M/1c, capture real-life behavior more
accurately than M/M/1 queues. They also lead to networks that
are universally stable: the merging of packets prevents queues
(and counters) to grow to infinity, irrespectively of demand.

Nevertheless, by introducing M/M/1c queues, we suffer a
reversal of fortune in comparison to Mahdian et al. [13]:
though we gain realism, we lose tractability, as the resulting
system is not a Kelly network, and steady-state distributions
are hard to describe. As a result, their steady-state behavior,
and the routing cost optimization that they correspond to,
are difficult to characterize in a closed form. One of the
main contributions of our work is to address this challenge
directly, providing both analytical and experimental evidence
that M/M/1c queues are well-approximated by M/M/∞ queues;
the latter are indeed easy to analyze, enabling us to produce
algorithms for the cache design problem with approximation
guarantees. In particular, we make the following contributions:

• We introduce networks of M/M/1c queues, aiming to cap-
ture network behavior with greater realism. In contrast to
M/M/1 queues, resulting networks are not Kelly networks,
and intermediate queue arrivals are not Poisson.

• We show that M/M/∞ queues approximate M/M/1c
queues; we show this both experimentally and an-
alytically, through a mutual stochastic dominance
(c.f. Thm. 1). Most importantly, both queues lead to
networks that are universally stable.

• Motivated by the above observations, we study two cache
network design problems, each serving as an approxima-
tion of a cache network with counting queues. Both prob-
lems optimize content placement and service assignment
decisions jointly. In the first problem, MINCOSTM/M/∞,
we approximate counting queues with M/M/∞ queues;
in the second problem, MINCOSTM/M/1c, we use M/M/1c
steady-state distributions, assuming however Poisson ar-
rivals in intermediate queues.

• We show that both problems are NP-hard (c.f. Thm. 2),
and construct a 1 − 1/e poly-time approximation algo-
rithm for the joint optimization of item placements and
service assignments (c.f. Thm. 4).

• Finally, we conduct extensive experiments over multiple
topologies: our joint item placements and service rate



assignments significantly outperform competitors.
From a technical standpoint, our algorithm solves a mixed
integer problem with a non-convex objective; this requires
showing that both MINCOSTM/M/∞ and MINCOSTM/M/1c ex-
hibit an important underlying structural property (c.f. Theo-
rem 3): their objectives are continuous Diminishing Returns
(DR) submodular [15] w.r.t. both content placements and
service assignments jointly, a result that is non-obvious.

The remainder of this paper is structured as follows. We
review related work in Sec. II. We introduce M/M/1c and
M/M/∞ queues, and formulate our two approximate problems
in Sec. III. Section IV contains our approximation algorithms.
Our experiments are in Sec. V, and we conclude in Sec. VI.

II. RELATED WORK

Cache networks have been intensely studied both experi-
mentally and theoretically. Several works [16]–[22] model the
network as a bipartite graph, in which requests fetch contents
in one hop, and proposed algorithms do not readily generalize
to arbitrary topologies. Multi-hop networks are studied by a
series of recent papers [9]–[12], [23], all of which assume
costs are linear functions of traffic. As such, they cannot be
used to model costs in queuing systems like the ones we study.

Dehgan et al. [21] and Ioannidis and Yeh [11] consider
the joint optimization of caching and routing in networks;
Dehghan et al. in particular study routing in the bipartite
setting, while Ioannidis and Yeh [11] do so in arbitrary
topologies. Our joint optimization of caching and service rates
is fundamentally different, not only because it contains both
continuous and integer variables; it is also not amenable to
standard submodularity approaches, as is [11], but requires the
use of continuous DR-submodular optimization [15] instead.
Zafari et al. [24] jointly optimize data compression rate and
data placement in a tree topology, posing this as a mixed
integer problem; they solve this by a spatial branch-and-bound
search strategy, which comes with no poly-time guarantees.

Maximizing a submodular function subject to a matroid
constraint is classic. Krause and Golovin [25] show that
the greedy algorithm achieves a 1/2 approximation ratio.
Calinescu et al. [26] propose a continuous greedy algorithm
improving the ratio to 1 − 1/e, that applies a Frank-Wolfe
[27] variant to the multilinear extension of the submodular
objective. Further improvements are made by Sviridenko et
al. [28] for a more restricted class of submodular functions.
Bian et al. [29] [15] show that the same Frank-Wolfe variant
can be used to maximize continuous DR-submodular functions
within a 1 − 1/e ratio. One of our technical contributions is
to show that the multilinear extension, in our case, which is a
function of both randomized item placements and continuous
service rates, is jointly DR-submodular in its input. We note
that we depart from multilinear extensions considered in prior
work [13], [26], [28], [30], that did not contain continuous
variables beyond the ones due to randomization.

Our work is closest to, and inspired by, recent work Mah-
dian et al. [13]. As discussed in the introduction, they consider
a cache network in which each edge is associated with an

M/M/1 queue. Resulting costs are not linear, capture queuing,
and the objective is submodular and therefore optimizable via
the continuous greedy algorithm of Calinescu et al. [26]. We
again depart by considering M/M/1c (counting) queues and
M/M/∞ approximations thereof, and optimizing item place-
ment and routing decisions jointly: as a result, our optimization
requires tools beyond classic submodularity.

III. PROBLEM FORMULATION

We consider a network of caches which store a finite number
of items. Requests for items are generated and are routed
through pre-determined paths. Upon hitting a cache which
stores the requested item, a response carrying the item is
back-propagated over the reverse path. This generates traffic
over queues on network edges. We aim to minimize traffic
costs by (a) placing items in caches and (b) assigning queue
service rates across responses appropriately. In what follows,
we describe this problem in detail.

A. System Model

Following Mahdian et al. [13], we consider a network
modeled as a directed graph G(V,E) with node set V . Each
edge e in the graph is represented by e = (u, v) ∈ E, where
u, v ∈ V . This directed graph is symmetric, i.e., if (u, v) ∈ E,
then (v, u) ∈ E as well.

1) Caches: Items of equal size are permanently stored in
certain network nodes, called designated servers. Formally, for
every item i ∈ C, where set C is the item catalog, we denote by
Si ⊆ V the set of designated servers storing i. Every node in
V , including designated servers, has additional storage that is
used to store more items from the catalog. Formally, each node
v is associated with a cache of finite storage capacity cv ∈ N.
We use a binary variable xvi ∈ {0, 1} indicating whether node
v ∈ V is caching item i ∈ C. Let vector xxx = [xvi]v∈V,i∈C ∈
{0, 1}|V ||C| be the global item placement vector. We denote
the set of feasible placements by:

D = {xxx ∈ {0, 1}|V ||C| :
∑
i∈C xvi ≤ cv,∀v ∈ V }. (1)

2) Requests and Responses: A set of nodes Q ⊆ V , called
query nodes, generate requests to fetch items from C. Let R
be the set of request types. Each request has a unique type
r ∈ R, determined by (a) the item ir ∈ C being requested,
and (b) the path pr ⊆ V followed by the request. We make the
following assumptions on path pr, r ∈ R: (a) pr is a sequence
of adjacent nodes, e.g. pr1, pr2, ..., prK , where (pri , p

r
i+1) ∈ E,

(b) pr1 ∈ Q, i.e., the first node of path is a query node, (c)
prK ∈ Sir , i.e., the last node of path is a designated server,
and (d) the path pr is simple, i.e., it does not contain repeated
nodes. For v ∈ pr, let kpr (v) ∈ {1, 2, ...,K} be the position
of node v in path pr, i.e., kpr (v) = k iff prk = v.

Requests of type r are generated according to an exogenous
Poisson process with rate λr ≥ 0, r ∈ R. Then, they follow
path pr; when the request reaches a node storing item ir, a
response is generated. This response carries item ir to query
node pr1 ∈ Q following the reverse path. Given all the paths
{pr, r ∈ R}, for every edge e ∈ E, we denote by Re the set



of response types passing through edge e, i.e., for e = (v, u),
R(v,u) = {r ∈ R : (u, v) ∈ pr}.

3) Queues and Costs: We assume requests are negligible,
but responses incur traffic in the network. We model this traffic
as follows. Every edge e ∈ E is associated with service rate
µe ∈ R+. The service rate in an edge is split across response
types. For every type r ∈ Re, there exists a queue with service
rate µre. Assume that the minimum service rate for all queues is
some small ε ∈ R+. Let vector µµµ = [µre]e∈E,r∈Re

∈ R
∑

e |Re|
+

be the global service rate assignment vector. We denote the
set of feasible assignments by:

Dµ={µµµ∈R
∑

e|Re|
+ : µre≥ε,

∑
r∈Re

µre≤µe,∀e∈E, r∈Re}. (2)

Let nre ∈ N be the queue size. We assume that traffic cost is
a function of nre and denote by cre(n

r
e) : N→ R+ the cost of

response type r on edge e. The global service rate assignment
µµµ and the global item placement xxx are design parameters:
we wish to determine xxx and µµµ jointly to minimize expected
traffic costs in steady state. Before we state this optimization
formally, we first describe the queues we consider.

B. Queue Types

Mahdian et al. [13] consider M/M/1 queues: all responses are
served individually by the edge server. This is convenient from
a modeling perspective, because M/M/1 queues form a Kelly
network [14]. However, transmitting same-type responses indi-
vidually over the same queue is both inefficient and impracti-
cal. If two responses of the same type are present in a queue, it
suffices to transmit only one of them: requests pending at the
same downstream source can be satisfied simultaneously by
the same response. Transmitting responses individually leads
to larger queue sizes, thereby incurring larger traffic costs,
but also larger delays (by Little’s Theorem [31]). In fact, the
system considered by Mahdian et al. becomes unstable when
the load of an M/M/1 queue is above one. This motivates us to
introduce a new type of queue we call a counting queue. As
we discuss below, this comes at the cost of increasing model
complexity: the network resulting from counting queues, albeit
more realistic (and, most importantly, universally stable), is not
a Kelly network and is, hence, harder to analyze.

1) M/M/1c Queue: To model realistic behavior, a counting
queue behaves as follows. When a response of type r arrives
at an empty queue on edge e, it experiences immediate service
with rate µre. A subsequent response of type r arriving before
the server is finished is not queued: instead, it merges with
the response in the server, and both are served simultaneously
with rate µre. In practice, this is implemented as follows: every
response is associated with a counter initialized to one by
the designated server generating it. Whenever two responses
of type r are collocated in an edge e, they merge into a
new response of type r, with a counter equal to the sum
of its constituent counters. Note that, as service times are
exponential, by the memoryless property [32], the residual
service time after a merge remains exponential with rate µre.
After being served, this merged response departs. This whole
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Fig. 1: M/M/1c queue. When two responses meet in a queue, they
merge as a new response with counter value equal to sum of their
respective counters. Queue size nre equals the counter value of the
packets in this queue, and 0 if the queue is empty.
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Fig. 2: M/M/1c and M/M/∞ transitions, assuming Poisson arrivals.

process is depicted in Fig. 1. We formally refer to such a
queue as an M/M/1c queue (‘c’ is for ‘counter’). We consider
the size nre of an M/M/1c queue to be equal to the counter
value of the merged response in the queue’s server. Assuming
Poisson arrivals of responses with counters equal to one, the
queue size process {nre(t); t ≥ 0} is a Markov process whose
transition diagram is described in Fig. 2(a), and its steady state
distribution is given by the following lemma:

Lemma 1. Assume that response arrivals follow a Poisson
process with rate λre, and each response’s counter is 1.
Then, the steady state distribution of the M/M/1c queue is
PM/M/1c(n

r
e = n) = (

ρre
ρre+1 )n( 1

ρre+1 ). where ρre =
λr
e

µr
e

is load of
response type r on edge e.

Note that this queue is universally stable, i.e., positive
recurrent for all ρre > 0. However, Lemma 1 only holds for
edges directly adjacent to a designated server. This is because
intermediate queues, further from a designated server, satisfy
neither of the two assumptions of Lemma 1: (a) arrivals are
not Poisson, and (b) counters of responses may be larger than
1. Overall, the entire system is not a Kelly network, and its
steady state distribution is difficult to describe in a closed form.

2) M/M/∞ Queue: The above state of affairs motivates us to
approximate counting queues with M/M/∞ queues [33]. Recall
that an M/M/∞ queue has infinite servers. Just as in an M/M/1c
queue, incoming responses are not queued but are immediately
served with service rate µre. However, the service times of
responses collocated in an M/M/∞ queue are independent,
while in M/M/1c they are tightly coupled: in fact, all responses
are served simultaneously. Again, {nre(t); t ≥ 0} is a Markov
process whose transition diagram is described in Fig. 2(b), and
its steady state distribution is given by the following lemma:



TABLE I: Notation Summary

R,N Sets of real and natural numbers
R+,N+ Sets of non-negative reals and positive naturals
G(V,E) Network graph, with nodes V and edges E
kpr (v) Position of node v in path pr
cv Cache capacity at node c ∈ V
xvi Integer variable indicating v ∈ V stores i ∈ C
xxx Global item placement vector of xvis in {0, 1}|V ||C|
R Set of types of requests
Re Set of types of responses passing through e
λr Request arrival rate for type r ∈ R
µe Service rate of edge e ∈ E
µre Service rate of type r ∈ Re over edge e
ε The minimum service rate of all µre
µµµ Global service rates vector of µres in R

∑
e |Re|

+
ρre Load of type r over edge e
D Set of feasible item placements xxx
Dµ Set of feasible service rates µµµ
CM/M/∞ Cost function for M/M/∞ queues
CM/M/1c Cost function for M/M/1c queues
C Generalized non-decreasing and convex cost function
F Caching gain of decision {xxx,µµµ} over {000, εεε}
D̃ Convex hull of D
yvi Probability that v stores i
yyy Vector of marginal probabilities yvis in [0, 1]|V ||C|

G Multilinear extension with marginals yyy
[xxx]+(v,i) Vector xxx with the (v, i)-th coordinate set to 1
[xxx]−(v,i) Vector xxx with the (v, i)-th coordinate set to 0

Lemma 2. Assume that response arrivals follow a Poisson
process with rate λre. Then, the steady state distribution of
M/M/∞ queue is PM/M/∞(nre = n) =

(ρre)
n

n! e−ρ
r
e , where ρre =

λr
e

µr
e

is load of response type r on edge e.

Note that responses here do not merge and, hence, implicitly
all have counter value one. There are several reasons why
M/M/∞ queues are good approximations of M/M/1c queues.
First, observe that both queues are universally stable. Second,
they exhibit the same aggregate service rate: when nre cus-
tomers are in the queue, the aggregate service rate in both
is nreµ

r
e; put differently, in both queues the aggregate service

rate grows linearly with the queue size. Finally, queue sizes
of M/M/1c and M/M/∞ queues are related through a notion
of mutual stochastic dominance. In particular, it is easy to
confirm from Lemmas 1 and 2 that the two queues have the
same expectation, i.e.,

EM/M/1c[n
r
e] = EM/M/∞[nre] = ρre. (3)

More generally, all moments of the two queues are coupled
through the following relationship:

Theorem 1. Let mk
M/M/1c(ρ

r
e) = EM/M/1c[(n

r
e)
k] and

mk
M/M/∞(ρre) = EM/M/∞[(nre)

k] be the k-th moment of nre in
M/M/1c and M/M/∞ queues, respectively. Then, for all ρre ≥ 0,

mk
M/M/∞(ρre) ≤ mk

M/M/1c(ρ
r
e) ≤ k! ·mk

M/M/∞(ρre). (4)

The proof can be found in Appendix B. This theorem
immediately implies that, for any polynomial cost function
cre(n

r
e), the expected costs under the two queues are within a

multiplicative constant (not depending on ρre) of each other.1

1This result can be extended to continuous functions using, e.g., the Stone-
Weierstrass Theorem [34].

A significant advantage of M/M/∞ queues is that they are re-
versible [32]. Hence, networks of such queues form a Jackson
network [35]. In steady state, departures from these queues are
Poisson by Burke’s theorem [36], and steady state distributions
can be characterized (c.f. Lemma 4 in Appendix A).

C. Cache Cost Minimization
As discussed above, given item placements xxx ∈ D and

service rate assignments µµµ ∈ Dµ, the network of M/M/∞
queues is a Jackson network. Arrivals of responses of type
r on edge e = (v, u) where (u, v) ∈ pr are Poisson with rate:

λre = λre(xxx) = λr
∏kpr (u)
k′=1 (1− xpr

k′ i
r ). (5)

Intuitively, this states that responses of type r pass through
edge (v, u) ∈ E iff all path predecessors of node v do not
store item ir, i.e., xv′ir = 0 for all v′ : kpr (v′) < kpr (v). With
Poisson arrivals, the expected cost of response type r ∈ Re
on edge e ∈ E, according to Lem. 2, is:

EM/M/∞[cre(n
r
e)] =

∑∞
n=0 c

r
e(n) · e−ρre (ρre)

n

n! , (6)

where the load of response type r ∈ Re on e=(u, v)∈E is:

ρre = ρre(xxx, µ
r
e) = λr

µr
e

∏kpr (v)
k′=1 (1− xpr

k′ i
r ). (7)

Given a cache network by graph G(V,E), service rate capac-
ities µe, e ∈ E, storage capacities cv , v ∈ V , a requests set
R and arrival rates λr, r ∈ R, we formulate the cache cost
minimization problem under M/M/∞ queues as follows:

MINCOSTM/M/∞
min
xxx,µµµ

: CM/M/∞(xxx,µµµ) =
∑
e∈E

∑
r∈Re

EM/M/∞[cre(n
r
e)], (8a)

s.t. : xxx ∈ D, µµµ ∈ Dµ, (8b)

where D is defined by (1) and Dµ is defined by (2).
Similarly, if the assumptions of Lemma 1 hold, the expected

cost of an M/M/1c queue is:

EM/M/1c[c
r
e(n

r
e)] =

∑∞
n=0 c

r
e(n) · ( ρre

ρre+1 )n( 1
ρre+1 ). (9)

where ρre are given by (7). Based on this observation, we also
consider a cache cost minimization problem under M/M/1c
queues, defined as:

MINCOSTM/M/1c
min
xxx,µµµ

: CM/M/1c(xxx,µµµ) =
∑
e∈E

∑
r∈Re

EM/M/1c[c
r
e(n

r
e)], (10a)

s.t. : xxx ∈ D, µµµ ∈ Dµ, (10b)

We stress that both problems (8) and (10) are approximations
of networks of counting queues. MINCOSTM/M/∞ is clearly an
approximation as M/M/∞ queues are used instead of M/M/1c
queues. The objective (8a) captures steady state costs in such a
system accurately, as arrivals in intermediate queues are indeed
Poisson. MINCOSTM/M/1c is an approximation as the objective
assumes Poisson arrivals and counters of size 1 at intermediate
queues, neither of which are true for a real network of M/M/1c
queues. As we see in Sec. V, these approximations appear to
perform well experimentally. Nevertheless, both problems are
hard; we prove the following in Appendix C:

Theorem 2. Problems (8) and (10) are NP-hard.



IV. MAIN RESULTS

In this section, we show how to solve Problems (8) and
(10) within a constant approximation, poly-time algorithm.
Mahdian et al. [13] approach caching problems via submodular
maximization. However, (8) and (10) can not be cast in this
setting, as they have mixed constraints: we would like to
determine not only item placements (integer variables) but also
service rates (continuous variables). Nevertheless, we construct
a 1 − 1/e-approximation poly-time algorithm. A crucial step
is that the so-called multilinear extensions of (8a) and (10a)
are jointly DR-submodular [29] w.r.t. xxx and µµµ.

A. Cache Gain Maximization

We introduce the following assumption on cost functions:

Assumption 1. For all r ∈ R, e ∈ E, and n ∈ N+,

cre(n+ 1)− cre(n) ≥ cre(n)− cre(n− 1) ≥ 0.

Using this assumption, we establish the following property:

Lemma 3. Under Assumption 1, the expected cost functions
EM/M/∞[cre(n

r
e)] and EM/M/1c[c

r
e(n

r
e)], given by (6) and (9), are

non-decreasing and convex w.r.t. load ρre, given by (7).

The proof is in Appendix D. Motivated by Lemma 3, we
consider a more general class of problems of the form:

MINCOST

min
xxx,µµµ

: C(xxx,µµµ) =
∑
e∈E

∑
r∈Re

Cre (ρre(xxx, µ
r
e)), (11a)

s.t. : xxx ∈ D, µµµ ∈ Dµ, (11b)

where expected cost functions Cre : D × Dµ → R+ are
non-decreasing and convex. Clearly, by Lem. 3, an algorithm
solving (11) can also solve both (8) and (10). Following [10],
[11], we consider an equivalent maximization problem instead:

MAXGAIN

max
xxx,µµµ

: F (xxx,µµµ) = C(000, εεε)− C(xxx,µµµ), (12a)

s.t. : xxx ∈ D, µµµ ∈ Dµ, (12b)

where 000 ∈ D is the empty cache placement, εεε = ε · 111 ∈ Dµ is
the vector of minimum service rates, and C(000, εεε) is an upper
bound on C(xxx,µµµ). MINCOST and MAXGAIN are equivalent,
because (11a) and (12a) only differ by a constant C(000, εεε).

B. DR-Submodularity

Let D̃ = conv({xxx : xxx ∈ D}) ⊆ [0, 1]|V ||C| be the convex
hull of the constraint set D. That is:

D̃ = {yyy ∈ [0, 1]|V ||C| :
∑
i∈C yvi ≤ cv,∀v ∈ V }. (13)

Given a yyy ∈ D̃, consider a random vector xxx generated as
follows: every xvi ∈ {0, 1} is an independent Bernoulli
variable such that P(xvi = 1) = yvi. The multilinear extension
[26] G(yyy,µµµ) : D̃ × Dµ → R+ of F is Ey[F (xxx,µµµ)], i.e.:

G(yyy,µµµ) =
∑

xxx∈{0,1}|V ||C|
F (xxx,µµµ)×

∏
(v,i)∈V×C

yxvi
vi (1− yvi)1−xvi . (14)

Given an X ⊆ Rd, we say that a function f : X → R is
DR-submodular [15], if for all aaa ≤ bbb ∈ X , and all i ∈ N,
k ∈ R+, s.t. (keeei + aaa) and (keeei + bbb) are in X , we have
f(keeei +aaa)− f(aaa) ≥ f(keeei +bbb)− f(bbb). The following lemma
establishes that G is DR-submodular over the extended domain
D̃ × Dµ:

Theorem 3. Under Assumption 1, the multilinear extension
G is non-decreasing DR-submodular jointly on both µµµ and yyy.

The proof is in Appendix E. This property is key; despite
the fact that G is not concave, DR-submodularity implies we
can maximize it within a constant factor. We stress here that
the property holds jointly for yyy and µµµ, which is non-obvious.

C. Algorithm Overview

Leveraging Thm. 3, our algorithm consists of two steps:
Step 1: DR-submodular maximization. We first apply a
variant of the Frank-Wolfe algorithm [29], summarized in
Alg. 1, on the multilinear extension G. For brevity, we join yyy
and µµµ as one variable zzz = {yyy,µµµ} ∈ Dz ≡ {zzz ∈ D̃×Dµ}. The
algorithm first initializes the solution as zzz = {000, εεε}. Then, it
iterates over the following steps:

mmmk ← arg max
mmm∈Dz

〈mmm, ∇̂G(zzzk)〉, (15a)

zzzk+1 = zzzk + γkmmmk, (15b)

where ∇̂G(zzzk) is an estimate of the gradient of G, and γk
is an appropriately chosen step size. An estimator of ∇G
is needed because both ∇G and G, given by (14), contain
an exponential (in |V ||C|) number of terms. We describe
this estimator in detail in Section IV-D. Given ∇̂G(zzzk), (15)
is a linear program, which can be solved in polynomial
time [29]. After K iterations, we get a fractional solution
zzzK = {yyyK ,µµµK}, i.e., the output of Alg. 1.
Step 2: Rounding. Finally, the fractional solution yyyK is
rounded into an integer solution xxxK . We describe how to do
this in Sec. IV-E. This produces an approximate solution xxxK
and µµµK to MAXGAIN.

Intuitively, DR-sumbodular maximization step (15) solves:

max
yyy,µµµ

: G(yyy,µµµ), (16a)

s.t. : yyy ∈ D̃, µµµ ∈ Dµ, (16b)

where D̃ is defined by (13). Alg. 1/Eq. (15) only solves (16)
approximately because objective (16a) is not concave. Never-
theless, because (16a) is DR-submodular by Lemma 3, Alg. 1
produces a 1 − 1/e approximation to (16); see Lemma 8 in
Appendix F for details. Combined with the rounding step, the
following theorem characterizes the approximation guarantee
of the overall algorithm:

Theorem 4. Let xxx∗, µµµ∗ be an optimal solution to (12), µµµK be
the output of Frank-Wolfe variant, and xxxK the integer solution
after rounding. Then, with high probability,

E[F (xxxK ,µµµK)] ≥ (1− 1
e )F (xxx∗,µµµ∗). (17)



Algorithm 1: Frank-Wolfe variant for G(zzz)

Input: G(zzz), Dz , step size γ ∈ (0, 1], initial point {000, εεε}
1 . t← 0, k ← 0, zzz0 ← {000, εεε}
2 while t < 1 do
3 mmmk ← argmaxmmm∈Dz

〈
mmm, ∇̂G(zzzk)

〉
4 γk ← min{γ, 1− t}
5 zzzk+1 = zzzk + γkmmmk, t← t+ γk, k ← k + 1
6 end
7 return zzzk

The “with high probability” is w.r.t. the randomness of the
estimator, while the expectation in (17) is w.r.t. the randomness
in the rounding step. The proof is in Appendix F.

D. Estimator of Gradient
Eq. (15a) presumes access to the gradient ∇G. Nonetheless,

both G and ∇G involve a summation over 2|V ||C| terms. To
create a poly-time algorithm, the usual approach is to use a
sampling-based estimator [26]. In short, the partial derivatives
of G w.r.t. yvi and µre are (see [26] for (18)):

∂G(xxx,µµµ)
∂yvi

= Ey[C(xxx,µµµ)|xvi=0]−Ey[C(xxx,µµµ)|xvi=1], (18)
∂G(xxx,µµµ)
∂µr

e
= 1

µr
e
Ey[

∂Cr
e (ρ

r
e)

∂ρre
· ρre]. (19)

One can thus estimate the gradient by (a) producing T random
samples xxx(l), l = 1, ..., T of the random vector xxx, consisting
of independent Bernoulli coordinates with P(xvi = 1) = yvi,
and (b) computing the empirical mean w.r.t. yvi:

∂̂G(xxx,µµµ)
∂yvi

= 1
T

∑T
l=1(C([xxxl]−(v,i),µµµ)−C([xxxl]+(v,i),µµµ)), (20)

where [xxxl]−(v,i), [xxxl]+(v,i) are equal to vector xxx with the (v, i)-
th coordinate set to 0 and 1, respectively, and w.r.t µre:

∂̂G(xxx,µµµ)
∂µr

e
= 1

Tµr
e

∑T
l=1

∂Cr
e (ρ

r
e([xxx

l],µr
e))

∂ρre([xxx
l],µr

e)
· ρre([xxxl], µre). (21)

According to Calinescu et al. [26], for the (with high prob-
ability) 1 − 1/e approximation ratio, O((|V ||C|)2 ln(|V ||C|))
samples suffice. There are other ways to estimate the gradient,
e.g., via a Taylor expansion [13]. This more efficient, so we
also use it in Sec. V. We refer readers to [13] for more details.

E. Swap Rounding
We review swap rounding [37], which is a probabilistic

rounding step. Given a fractional yyyK , it can be written as
a convex combination of some integer vectors BBBl, i.e., yyyK =∑L
l=1 βlBBBl, where

∑L
l=1 βl = 1, βl ≥ 0, and BBBl ∈ D. By

construction, each BBBl is maximal. This algorithm iteratively
merges these BBBl, each iteration one BBBl, to produce a new
integer solution xxxl, until xxxl equal to BBBl+1. If xxxl′ differs BBBl′+1

by an item i in v, the item i replaces another different item j

in BBBl′+1 with probability proportional to
∑l′

l=1 βl, or another
different item j inBBBl′+1 replaces item i in xxxl′ with probability
proportional to βl′+1. Swap rounding ensures that the objective
does not decrease in expectation during rounding, i.e.,

E[G(xxxK ,µµµK)] ≥ G(yyyK ,µµµK). (22)

The algorithm terminates in at most O(|V ||C|) steps.

topologies |V | |E| |C| |R| |Q| cv
ER 100 1042 100 1000 4 2

ER-20Q 100 1042 100 1000 20 2
star 100 198 100 1000 4 2
HC 128 896 100 1000 4 2

HC-20Q 128 896 100 1000 20 2
dtelekom 68 546 100 1000 4 2
abilene 9 26 100 1000 4 2
geant 22 66 100 1000 4 2

TABLE II: Graph Topologies and Experiment Parameters.

F. Time Complexity

To ensure Thm. 4 holds, the number of samples T used for
sample-based estimator of gradient is O((|V ||C|)2 ln(|V ||C|))
[13]. Each sample requires at most O(|E||R|) operations.
Given a gradient, (15) requires polynomial time in the number
of constraints and variables, which are O(|V ||C| + |E||R|).
We iterate (15) at most O(|V ||C|) times [13]. The rounding
schemes presented in Sec. IV-E are also poly-time, i.e., at most
O(|V ||C|) steps. In summary, the overall time complexity of
our algorithm is O(|E||R|(|V ||C|)3 ln(|V ||C|)).

V. EXPERIMENTS

1) Experiment Setting: We execute our algorithms on
Erdős-Rényi (ER), star, hypercube (HC), Deutsche Telekom
(dtelekom), GEANT, and Abilene backbone networks
[38]. The graph parameters of different topologies are shown
in Tab. II. Each node v ∈ V has cv storage to cache item from
a catalog of size |C|. Each item i ∈ C is stored permanently
in one designated server Si which is picked uniformly at
random (u.a.r.) from V . Also, we u.a.r. select |Q| nodes from
V as query nodes. Each of them generates around b|R|/|Q|c
requests. For each request type r ∈ R, rate λr is uniformly
distributed over [1.0, 2.0]. The item ir requested by r is chosen
from catalog C via a power law distribution with exponent
1.2. The path pr is the shortest path between the query node
pr1 ∈ Q and designated server prK ∈ Sir . We set µe = 200.0 at
each edge e, and ε = 0.1. Cost functions ce(nre) are moments
of the queue size E[(nre)

k], where k = 1, 2, 3, 4.
We conduct two types of experiments. (i) In the offline

setting, we compute the expected costs CM/M/∞ and CM/M/1c

according to (8a) and (10a), respectively. (ii) In the on-
line setting: we simulate packets in M/M/1c and M/M/∞
queues network, and compute the time-average cost. More
specifically, we monitor queues status at epochs ts of a
Poisson process with rate 1.0, leveraging PASTA [39], for
5000 time slots. For N measurements, the time average
cost is: C̄· = 1

N

∑N
s=0

∑
e∈E

∑
r∈Re

cre(n
r
e(ts)), where · ∈

{M/M/∞, M/M/1c} indicates on the type of queues simulated,
and nre(ts) is queue size at epoch ts.

2) Cache and Service Rate Algorithms: We compare to
both online and offline algorithms. Offline algorithms are:
(a) Service Equally-Cache Uniformly (SE-CU): first equally
assign service rates for Re over all e ∈ E and then uniformly
place items in each node. (b) Cache Uniformly-Service Equally
(CU-SE): first uniformly place items in each node and then
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Fig. 3: Cost and time for different topologies and algorithms for
quadratic costs.

equally assign service rates for responses passing through
edge e for all e ∈ E. Note that service rates depend on
item placements in CU-SE. (c) Service Equally-Greedy (SE-
Greedy): first equally assign service rates for Re over all
e ∈ E and then use the classic greedy algorithm [25] for
item placements. (d) Frank-Wolfe with 500 Random Samples
(FWRS500): Alg. 1 with gradient estimated by 500 random
samples. (e) Frank-Wolfe with 1st/2nd order Taylor expansion
(FWT1/FWT2): Alg. 1 with gradient estimated by the first and
the second order Taylor expansion respectively (c.f. [13]).

We also consider online algorithms, in which service rates
are determined in advance and item placements change dy-
namically. As in the offline algorithms, we consider two
service strategies: (a) Service Equally (SE): equally assign
service rates for Re over all e ∈ E, (b) µFW : service
rates µµµ calculated by Alg. 1. We combine these with item
placements based on path replication [8]: when responses are
back-propagated over the reverse path, nodes they encounter
store requested items, evicting items via LRU, LFU, or FIFO
eviction policies.

3) Results: Different Topologies. The cache cost CM/M/∞
and the running time generated by different algorithms for
quadratic costs is shown in Fig. 3(a) and 3(b). SE-Greedy im-
proves over SE-CU and CU-SE, nevertheless, FW algorithms
yield further improvements. As in [13], Taylor approximations
are faster than sampling, without a loss in performance.
Different Cost Functions. The impact of the cost function
exponent on different algorithms is shown over dtelekom
and ER-20Q in Fig. 4(a) and 4(b). Consistently with Fig. 3,
FW outperforms competitors, with SE-Greedy being a close
second. FWT1 performance degrades at the 4th moment in Fig.
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Fig. 4: Cost at different order of moments. Our algorithms achieve
the lowest cost in different cost functions.
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under quadratic costs.

4(a) due to the poor quality of the 1st order Taylor expansion.
Online Algorithms. Fig. 5 compares FWT2 to online al-
gorithms under quadratic costs over M/M/∞ queues. FWT2
achieves the lowest time average costs C̄M/M/∞. Eviction
algorithms with µFW are worse than SE most of the time.
This means good performance of FWT2 comes from joint op-
timization. Note that time average costs of FWT2 in Fig. 5 and
expected costs in Fig. 3(a) are almost identical, which verifies
the reliability of our experiments from another perspective.
Comparing M/M/1c and M/M/∞ Queues. Finally, we confirm
the quality of our two approximations of M/M/1c queues ex-
perimentally. Our goal is to (i) understand how well expected
cost objectives (8a) and (10a) capture the time average costs
C̄M/M/1c, and (ii) assess the quality of solutions zzzM/M/1c and
zzzM/M/∞ to Problems (10) and (8), respectively.

To that end, we plot both the expected cost objectives
CM/M/1c, CM/M/∞, as well as the time averages C̄M/M/1c, C̄M/M/∞
for the two inputs zzzM/M/1c and zzzM/M/∞ in Fig. 6. We make the
following broad observations. First, expected costs (Fig. 6(a)
and 6(c)) are almost identical to time average costs (Fig. 6(b)
and 6(d)). This is anticipated for M/M/∞ queues, that form
a Jackson network, but is not obvious for M/M/1c queues.
Second, cost functions CM/M/∞ and CM/M/1c differ, and this
difference becomes more pronounced as k increases; this is
again anticipated by Thm. 1, as the stochastic domination
becomes looser for larger k. Nevertheless, the solutions zzzM/M/1c
and zzzM/M/∞ exhibit almost identical behavior w.r.t all four ob-
jectives. For example, CM/M/1c(zzzM/M/∞) ≈ CM/M/1c(zzzM/M/1c) ≈
C̄M/M/1c(zzzM/M/1c) ≈ C̄M/M/1c(zzzM/M/∞). This means that, even
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Fig. 6: Expected costs and time-average costs in M/M/∞ v.s. M/M/1c
queue networks. The two approximate models obtain similar, and
good, solutions.

ER ER-
20Q

star HC HC-
20Q

DT ab/ne geant

CM/M/1/C(zzzM/M/∞) 332 79.9 3827 1112 227 616 1540 1697
C̄M/M/1/C(zzzM/M/∞) 334 81.2 3880 1202 244 622 1714 1860
CM/M/1/C(zzzM/M/1/C) 332 79.8 3842 1115 212 620 1570 1707
C̄M/M/1/C(zzzM/M/1/C) 341 80.9 3871 1199 228 623 1759 1884

TABLE III: Expected costs and time-average costs under different
topologies for quadratic cost functions.

though the two objectives are not the same, the quality of the
solutions that they produce is quite similar. We also observe
this in Table III, where these numbers are shown for quadratic
objectives across topologies.

VI. CONCLUSION

We model a cache network as a system of counting queues
in which identical packets merge when collocated. We propose
an offline algorithm; even though item placements and service
rate assignments should not be presumed as static, as they
depend on the demand as solutions to Problem (11), fully
adaptive algorithms would be interesting to study. Merging on
the basis of items, rather than request types, or even stopping
requests early when they encounter queues that store an item,
rather than caches, are interesting practical directions. Both
are harder to analyze, but intuition gained in our setting may
be applicable in these contexts too.

APPENDIX

A. Jackson Network

Let the state of a network of M/M/∞ queues be n =
[nre]e∈E,r∈Re

, where nre is the number of responses of type r
on edge e. Then, for each r ∈ R, the corresponding network
is a Jackson network [14], [35] and, in particular:

Lemma 4. The joint distribution in steady state has following
product form: π(n) =

∏
e∈E

∏
r∈R π

r
e(n

r
e), where πre(n

r
e) =

(ρre)
nr
e

(nr
e)!

e−ρ
r
e , nre ∈ N.

B. Proof of Theorem 1

We first state two auxiliary lemmas.

Lemma 5. mk
M/M/1c(ρ) and mk

M/M/∞(ρ) can be obtained from
recurrence relations:

mk+1
M/M/1c(ρ) = ρmk

M/M/1c(ρ) + ρ(ρ+ 1)
dmk

M/M/1c(ρ)

dρ ,

mk+1
M/M/∞(ρ) = ρmk

M/M/∞(ρ) + ρ
dmk

M/M/∞(ρ)

dρ .

Proof. The mk
M/M/∞ statement is due to Riordan (see Sec. 3,

pp.105-106 in [40]). The mk
M/M/1c case follows similarly.

Lemma 6. Both mk
M/M/1c(ρ) and mk

M/M/∞(ρ) are polynomials,
i.e., : mk

M/M/1c(ρ) =
∑k
i=1 β

k
i ρ

i, mk
M/M/∞(ρ) =

∑k
i=1 α

k
i ρ
i,

where βki , α
k
i > 0, and βk

i

αk
i

= i!

Proof. We prove this by induction. For k = 1, this follows
from (3) (also Lem. 5 for k = 0). Suppose it holds for
k = `, i.e., m`

M/M/1c(ρ) =
∑`
i=1 i!α

`
iρ
i, and m`

M/M/∞(ρ) =∑`
i=1 α

`
iρ
i. Then, when k = `+ 1, by Lemma 5:

m`+1
M/M/1c(ρ) = α`1ρ+

∑`
i=2 i!(α

`
i−1+iα`i)ρ

i+(`+1)!α``ρ
+̀1

m`+1
M/M/∞(ρ) = α`1ρ+

∑`
i=2(α`i−1 + iα`i)ρ

i + α``ρ
`+1

Comparing terms, we have β`+1
i

α`+1
i

= i!.

To prove Thm. 1, observe that by Lemma 6,
mk

M/M/∞(ρ)

mk
M/M/1c

(ρ)
=∑k

i=1 α
k
i ρ

i∑k
i=1 i!α

k
i ρ

i . Hence,
∑k

i=1 α
k
i ρ

i∑k
i=1 k!α

k
i ρ

i ≤
mk

M/M/∞(ρ)

mk
M/M/1c

(ρ)
≤

∑k
i=1 α

k
i ρ

i∑k
i=1 α

k
i ρ

i ,

which implies 1
k! ≤

mk
M/M/∞(ρ)

mk
M/M/1c

(ρ)
≤ 1.

C. Proof of Theorem 2 [Sketch]

Observe that MINCOSTM/M/∞ and MINCOSTM/M/1c are
identical when cre(n

r
e) = nre, i.e., when the cost is the queue

size: by (3), both expected costs are equal to ρre. We reduce
the (NP-hard) fixed routing cost problem by Ioannidis and Yeh
[10] to this problem. To do so, if an edge has cost wuv , we
set µuv = |Ruv|/wuv and ε = 1/wuv . Then the service rate
µruv at each queue on edge (u, v) is exactly 1/wuv (i.e., Dµ is
a singleton), and both MINCOSTM/M/∞ and MINCOSTM/M/1c
coincide with the fixed cost routing problem.

D. Proof of Lemma 3

By Eq. (9), the expected costs of M/M/1c queues are:

EM/M/1c[c
r
e(n

r
e)]=cre(0)+

∞∑
n=0

(cre(n+1)−cre(n))(
ρre

ρre + 1
)n+1.

Hence, dEM/M/1c[c
r
e(n

r
e)]

dρre
=

∑∞
n=0(cre(n + 1) − cre(n)) ·

(n+1)(ρre)
n

(ρre+1)n+2 ≥ 0. Moreover, d2EM/M/1c[c
r
e(n

r
e)]

d(ρre)
2 =

∑∞
n=0 ∆n,

where ∆n = (cre(n + 1) − cre(n))(n + 1)
n(ρre)

n−1−2(ρre)
n

(ρre+1)n+3 .



By Assumption 1, for n0 ≡ b2ρrec we have that ∆n ≥
(cre(n0 + 1) − cre(n0))(n + 1)

n(ρre)
n−1−2(ρre)

n

(ρre+1)n+3 , for all n ∈ N.

Hence, d2EM/M/1c[c
r
e(n

r
e)]

d(ρre)
2 ≥ (cre(n0 + 1)− cre(n0))

∑∞
n=0

[
(n+

1)n
(ρre)

n−1

(ρre+1)n+3−2(n+1)
(ρre)

n

(ρre+1)n+3

]
= 0. Thus, EM/M/1c[c

r
e(n

r
e)]

is non-decreasing and convex w.r.t. ρre. Similarly, by Eq. (6):

EM/M/∞[cre(n
r
e)]=c

r
e(0)+

∞∑
n=0

(cre(n+1)−cre(n))e−ρ
r
e

∞∑
l=n+1

(ρre)
l

l!
.

Hence, dEM/M/∞[cre(n
r
e)]

dρre
=

∑∞
n=0(cre(n + 1) − cre(n)) ·

e−ρ
r
e
(ρre)

n

n! ≥ 0. Moreover, d2EM/M/∞[cre(n
r
e)]

d(ρre)
2 =

∑∞
n=0 ∆n,

where ∆n = (cre(n+1)−cre(n))(−e−ρre (ρre)
n

n! +e−ρ
r
e
n(ρre)

n−1

n! ).
By Assumption 1, for n0 ≡ bρrec we have that ∆n ≥
(cre(n0 + 1) − cre(n0))(−e−ρre (ρre)

n

n! + e−ρ
r
e
n(ρre)

n−1

n! ), for

all n ∈ N. Hence, d2EM/M/∞[cre(n
r
e)]

d(ρre)
2 ≥ (cre(n0 + 1) −

cre(n0))·(
∑∞
n=0−e−ρ

r
e
(ρre)

n

n! +
∑∞
n=1 e

−ρre (ρre)
n−1

(n−1)! ) = 0. Thus,
EM/M/∞[cre(n

r
e)] is non-decreasing and convex w.r.t. ρre.

E. Proof of Theorem 3

Let function F (S,µµµ) , F (xxxS ,µµµ), S = {supp(xxx)}. We first
introduce an auxiliary lemma:

Lemma 7. If the expected cost functions Cre are non-
decreasing and convex, the set function F (S,µµµ) is: (a) non-
decreasing concave on µµµ and (b) non-decreasing submodular
on set S.

Proof. For convenience, we replace subscripts e and super-
scripts r by subscript i ∈ E ×

∑
eRe. By Lemma 3, Ci(ρi)

is non-decreasing convex w.r.t. ρi. And, ρi = λi

µi
is decreasing

convex w.r.t. µi. Hence, by Eq. (3.10), p.84 of [41], we have
that ∂Ci(xxx,µi)

∂µi
≤ 0, ∂2Ci(xxx,µi)

∂µ2
i

≥ 0. Hence, the first derivative

of F (S,µµµ) w.r.t. µi is: ∂F (S,µµµ)
∂µi

= −∂C(xxx,µµµ)
∂µi

≥ 0, and the
second derivative w.r.t. µi, µj is:

∂2F (S,µµµ)
∂µi∂µj

= −∂
2C(xxx,µµµ)
∂µi∂µj

=

{
0 i 6= j

−∂
2Ci(xxx,µi)
∂µ2

i
i = j

≤ 0,

so ∇µµµF (S,µµµ) ≥ 000 and ∇2
µµµF (S,µµµ) � 0. And F (S,µµµ)

is non-decreasing and concave on µµµ. We know that Ci is
non-decreasing and convex w.r.t. ρi. The first derivative of
F (S,µµµ) w.r.t. ρi is: ∂F (S,µµµ)

∂ρi
= −∂C(xxx,µµµ)

∂ρi
≤ 0, and the second

derivative w.r.t. ρi, ρj is:

∂2F (xxx,µµµ)
∂ρi∂ρj

= −∂
2C(xxx,µµµ)
∂ρi∂ρj

=

{
0 i 6= j

−∂
2Ci(xxx,µi)
∂ρ2i

i = j
≤ 0,

so ∇ρρρF (xxx,µµµ) ≤ 000, ∇2
ρρρF (xxx,µµµ) � 0. Furthermore, F (S,µµµ)

is non-increasing and concave on ρρρ. By Corollary 1 in [13],
F (S,µµµ) is non-decreasing and submodular on set S.

By Lemma 7:

∂G(yyy,µµµ)

∂µi
=
∑

xxx∈{0,1}|V ||C|

∂F (xxx,µµµ)

∂µi
×
∏

(v,i)∈V×C

yxvi
vi (1− yvi)1−xvi ≥ 0,

and
∂G(yyy,µµµ)

∂yi
= Ey[F (xxx,µµµ)|xi = 1]− Ey[F (xxx,µµµ)|xi = 0] ≥ 0.

Thus G is non-decreasing in both µµµ and yyy. By Lemma 7, we
get:

∂2G(xxx,µµµ)

∂µi∂µj
=
∑

xxx∈{0,1}|V ||C|

∂2F (xxx,µµµ)

∂µi∂µj
×
∏

(v,i)∈V×C

yxvi
vi (1−yvi)1−xvi≤0,

while, as shown in [26],
∂2G(yyy,µµµ)
∂yi∂yj

=Ey[F (xxx,µµµ)|xi=1, xj=1]−Ey[F (xxx,µµµ)|xi=1, xj=0]

−Ey[F (xxx,µµµ)|xi=0, xj=1]+Ey[F (xxx,µµµ)|xi=0, xj=0]

≤ 0. (23)

Then, ∂F (xxx,µµµ)
∂µi

= −∂Ci(ρi)
∂ρi

∂ρi
∂µi

= ∂Ci(ρi)
∂ρi

ρi
µi
≥ 0, and

∂
∂ρi

∂F (xxx,µµµ)
∂µi

= ∂2Ci(ρi)
∂ρ2i

ρi
µi

+ ∂Ci(ρi)
∂ρi

1
µi
≥ 0. So, ∂F (xxx,µµµ)

∂µi
is non-

decreasing w.r.t. ρi. Since ρi is non-increasing w.r.t. xxx, ∂F (xxx,µµµ)
∂µi

is non-increasing w.r.t. xxx. Then ∂2G(yyy,µµµ)
∂µi∂yj

=Ey[∂F (xxx,µµµ)
∂µi

|xj =

1]−Ey[∂F (xxx,µµµ)
∂µi

|xj = 0] ≤ 0. Hence, all of the entries of
G(xxx,µµµ)’s Hessian w.r.t. both µµµ and xxx are non-positive, and
G is DR-submodular [15].

F. Proof of Theorem 4

We begin by stating a lemma on the quality of the output
of Alg. 1, assuming that the estimate ∇̂G is produced via the
sampling method outlined in Sec. IV-D.

Lemma 8. For a fixed number of iterations K which is large
enough, and constant stepsize γk = γ = K−1, Alg. 1 provides
the following approximation guarantee with high probability:

G(zzzK) ≥ (1− 1
e )G(zzz∗), (24)

where zzzK is output of Alg. 1, zzz∗ is an optimal solution to
Problem (16).

Proof. G is DR-submodular shown in Lemma 3, domain D̃×
Dµ is a down-closed convex set, and Lipschitz parameter of
∇G is 2C(000, εεε) because ||∇2G(zzz)|| is bounded by 2C(000, εεε)
according to (23). With above conditions, Corollary 1 by Bian
et al. [29] states: G(zzzK) ≥ (1 − 1

e )G(zzz∗) − L
2K , where L =

2C(000, εεε) is a finite constant. Calinescu et al. [26] show that for
large enough K, the offset L

2K can be omitted and (24) still
holds with high probability. The term “with high probability”,
due to sample-based estimation of ∇G, and means probability
at least 1− 1/|V ||C|.

To conclude the proof of Theorem 4, we have:

E[F (xxxK ,µµµK)]
Eq. (14)

= E[G(xxxK ,µµµK)]
Eq. (22)
≥ G(yyyK ,µµµK)

Lem. 8
≥

(1− 1
e )G(yyy∗,µµµ∗) ≥ (1− 1

e )F (xxx∗,µµµ∗), where xxx∗ and µµµ∗ is an
optimal solution to (12), yyy∗ is an optimal solution to (16), yyyK
and µµµK is the output of Frank-Wolfe variant algorithm, and
xxxK is the integer solution after rounding. The first equation
holds because F and G are equal under integer arguments xxxK .
The last inequality holds because (16) has a larger feasible
region.
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