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Abstract—We study a cache network in which intermediate
nodes equipped with caches can serve requests. We model the
problem of jointly optimizing caching and routing decisions with
link capacity constraints over an arbitrary network topology.
This problem can be formulated as a continuous diminishing-
returns (DR) submodular maximization problem under multiple
continuous DR-supermodular constraints, and is NP-hard. We
propose a poly-time alternating primal-dual heuristic algorithm,
in which primal steps produce solutions within 1 − 1

e
approxi-

mation factor from the optimal. Through extensive experiments,
we demonstrate that our proposed algorithm significantly out-
performs competitors.

I. INTRODUCTION

The problem of optimally storing content in a network
arises in a broad array of networking applications and systems,
including information-centric networks (ICNs) [1], content-
delivery networks (CDNs) [2], and wireless/femtocell net-
works [3], to name a few. It has recently been the focus
of several studies that aim to design cache networks with
optimality guarantees [1]–[7]. Such works optimize either
caching decisions alone [2], [4], [5] or caching and routing
jointly [2], [6]. Objectives include, e.g., minimizing aggregate
transfer costs [4], [5] or queuing delays [7]–[9], maximizing
a fairness objective [1], [10] or throughput [11], [12], etc.

Following Ioannidis and Yeh [6], we consider a network
in which requests for content generated by customer-facing
gateways are routed towards fixed servers, but can be served
by intermediate, cache-enabled nodes. The network designer’s
goal is to determine (a) how to route requests, as well as (b)
where to place contents, to minimize overall transfer costs.
Even though this problem is NP-hard, Ioannidis and Yeh [6]
provide a polytime approximation algorithm, and show that
joint optimization of caching and routing decisions can reduce
transfer costs by three orders of magnitude, in practice.

This analysis assumes infinite link capacities, which is
implausible for real-life networks. We depart by introducing
link capacity constraints: we assume every edge in the network
can carry at most a constant amount of traffic per second.
This is clearly more realistic, but also leads to optimization
problems of a vastly different nature than [6]. For example,
unbounded capacities result in deterministic optimal solutions,
whereby each demand is routed over a single, unique path.
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In contrast, introducing link capacity constraints gives rise to
multi-path optimal solutions: optimal traffic may split across
multiple routes. From a technical standpoint, introducing link
capacities drastically changes our optimization problem. In
contrast to the vast majority of prior research in the area [3],
[6], [8], our constraints no longer form a matroid; this requires
a very different algorithm than the one employed by [6].

Several works [13]–[15] consider congestion control in bi-
partite (one-hop) cache networks, but their network model and
guarantees do not apply to arbitrary (multi-hop) topologies.
Closer to us, Liu et al. [11] and Kamran et al. [12] provide
approximation guarantees under link capacity constraints in ar-
bitrary topologies, but differ in both their objective (throughput
maximization) and constraints. In particular, there is no notion
of routing costs, as incorporated in our setting. Moreover, none
of above works gives rise to the DR-submodular structures we
observe in our optimization problem. Overall, these existing
algorithms cannot be applied to our setting. Our contributions
are as follows:

• We model the problem of joint optimization of caching
and routing decisions with link capacity constraints over
an arbitrary topology. Our model yields a continuous
DR-submodular maximization problem under a set of
continuous DR-supermodular constraints.

• The objective is not concave and constraints are not con-
vex. We propose a polynomial-time Lagrangian primal-
dual algorithm for this problem. Though the combined,
end-to-end algorithm is a heuristic, we show that a 1− 1

e
approximation guarantee holds during primal steps.

• Finally, we conduct extensive experiments over both
synthetic and trace-driven networks: our proposed al-
gorithm outperforms several baselines significantly w.r.t.
both cache gain and feasibility.

The remainder of this paper is organized as follows. Sec. II
introduces the model of cache networks and formulates joint
optimization problem. Sec. III describes our analysis of the
problem and proposed algorithm. We present numerical ex-
periments in Sec. IV and conclude in Sec. V. The extended
version of this paper is available in [16].

II. MODEL

Network Model and Content Requests. We consider a
network represented as a directed, symmetric1 graph G(V,E).

1A directed graph is symmetric when (i, j) ∈ E implies that (j, i) ∈ E.



Content items (e.g., files, or file chunks) of equal size are to
be distributed across network nodes. We denote by C the set
of content items, i.e., the catalog. The network serves requests
for items in C routed over the G. A request (i, s) is determined
by (a) the item i ∈ C requested, and (b) the request source
s ∈ V . We denote by R ⊆ C × V the set of all requests.
For each i ∈ C, there exists a fixed set of designated server
nodes Si ⊆ V , that always store i. A node v ∈ Si permanently
stores i in excess memory outside its cache. A request (i, s) is
routed over a path in G towards a designated server. However,
forwarding terminates upon reaching any intermediate cache
that stores i. At that point, a response carrying i is sent over the
reverse path, back to s. Both caching and routing decisions are
network design parameters, while request arrivals are problem
inputs. We define all three below.

Request Arrival Process. Requests arrive according to an
i.i.d. process: time is slotted and, at each timeslot t ∈ N, a
random subset R(t) ⊆ R of requests occur. We denote by

λ(i,s) = P[(i, s) ∈ R(t)] ∈ [0, 1], (i, s) ∈ R, (1)

the marginal probability that request (i, s) occurs.

Caching Strategies. Each node has a cache that can store a
finite number of items. We denote by cv ∈ N the capacity at
node v ∈ V . For each node v ∈ V , vector xv ∈ {0, 1}|C|
indicates v’s caching state: xv,i ∈ {0, 1}, for i ∈ C, is the
binary variable indicating whether v stores content item i. We
assume that vectors xv are random and independent across
v ∈ V . As v can store no more than cv items, we have:∑

i∈C
xv,i ≤ cv, for all v ∈ V. (2)

We define the system’s caching strategy to be a station-
ary probability distribution over valid caching states x ∈
{0, 1}|V ||C|, i.e., ones that (a) satisfy Eq. (2) and (b) have
a product form over v ∈ V . We denote by

ξv,i ≡ P[xv,i = 1] = E[xv,i] ∈ [0, 1], for i ∈ C, (3)

the marginal probability that node v caches item i, and by
ξ = [ξv,i]v∈V,i∈C ∈ [0, 1]|V ||C|, the corresponding expectation
of the caching strategy. By Eq. (2) and Eq. (3):∑

i∈C
ξv,i ≤ cv, for all v ∈ V. (4)

Source Routing Strategies. For every request (i, s) ∈ R, we
assume that there exists a set P(i,s) of paths that the request
can follow towards a designated server in Si. A source node
s can forward a request among any of these paths; however,
responses are constrained to reversely follow the same path
as the request they serve. A path p of length |p| = K is a
sequence {p1, p2, . . . , pK} of nodes pk ∈ V . Given a path
p and a v ∈ p, let kp(v) be the position of v in p. Given
sets P(i,s), (i, s) ∈ R, the routing state of a source s ∈ V
w.r.t. request (i, s) ∈ R is a vector r(i,s) ∈ {0, 1}|P(i,s)|,
where r(i,s),p ∈ {0, 1} is a binary variable indicating whether

s selects path p ∈ P(i,s). These satisfy:∑
p∈P(i,s)

r(i,s),p = 1, for all (i, s) ∈ R, (5)

indicating that exactly one path is selected. We again assume
that r(i,s) are independent random variables across (i, s) ∈ R.

The system’s routing strategy to be a stationary distribution
over valid routing states, i.e., states that (a) satisfy Eq. (5) and
(b) have a product form over (i, s) ∈ R. For p ∈ P(i,s), let

ρ(i,s),p ≡ P[r(i,s),p = 1] = E[r(i,s),p] ∈ [0, 1], (6)

be the marginal probability that path p is selected by s.
Let PTOT =

∑
(i,s)∈R |P(i,s)|, be the total number of paths.

Then, the routing strategy is determined by ρ = [ρ(i,s),p]

(i,s)∈R,p∈P(i,s)
∈ [0, 1]PTOT , where, by Eqs. (5) and (6),∑

p∈P(i,s)

ρ(i,s),p = 1, for all (i, s) ∈ R. (7)

Link Capacities. Every edge (u, v) ∈ E is associated with
a capacity µu,v ≥ 0, indicating the maximum traffic it can
sustain: in expectation, the traffic at (u, v) must not exceed
µu,v . Formally, since cache states across nodes in the path
p ∈ P(i,s) are independent, we have that for all (u, v) ∈ E:

∑
(i,s)∈R

λ(i,s)
∑

p∈P(i,s):(v,u)∈p

ρ(i,s),p

kp(v)∏
k′=1

(1−ξpk′ ,i) ≤ µu,v. (8)

Costs and Objective. To capture costs (e.g., latency, money,
etc.), we associate a weight wu,v ≥ 0 with each edge (u, v) ∈
E, representing the cost of transferring an item across (u, v).
Again, by independence, the expected transfer cost for serving
a request (i, s) ∈ R given pair (ξ,ρ) is:

C(i,s)(ξ,ρ) =
∑

p∈P(i,s)

ρ(i,s),p

|p|−1∑
k=1

wpk+1,pk

k∏
k′=1

(1−ξpk′ ,i). (9)

Intuitively, Eq. (9) states that C(i,s) includes the cost of an
edge (pk+1, pk) in the path p if (a) p is selected by the routing
strategy, and (b) no cache preceding this edge in p stores i.

We wish to minimize the total expected transfer cost:

Minimize: C(ξ,ρ) =
∑

(i,s)∈R

λ(i,s)C(i,s)(ξ,ρ) (10a)

subj. to: Eqs. (3), (4), (6), (7), and (8). (10b)

This problem is NP-hard [3], [6]. We note that, the constraint
set is not a convex polytope, due to Eq. (8), and the objective is
not convex. Compared to the setting considered by Ioannidis
and Yeh [6], we account for additional capacity constraints
via Eq. (8), which in turn lead to the non-convexity of the
constraint set.

III. MAIN RESULTS

Despite the lack of convexity of Problem (10), we show
that after an appropriate change of variables the objective can
be written as a continuous DR-submodular function [17]. This



gives rise to a primal-dual heuristic, in which primal steps are
approximable via a polytime algorithm.

A. Conversion to a Continuous DR-submodular Problem

To convert Problem (10) to a problem amenable through a
solution via algorithms that exploit DR-submodularity, we first
introduce the auxiliary variables, for all p ∈ P(i,s), (i, s) ∈ R:

ρ̃(i,s),p = 1− ρ(i,s),p ∈ [0, 1]. (11)

I.e., these are the “complements” of the routing variables;
we also denote the corresponding vector comprising these
complement variables by ρ̃ ∈ [0, 1]PTOT . Let C0 ≡

∑
(i,s)∈R

λ(i,s)
∑

p∈P(i,s)

∑|p|−1
k=1 wpk+1,pk

. Observe that this is a univer-
sal constant, not depending or ρ or ξ. We define the objective:

F (ξ, ρ̃) = C0 − C(ξ, 1− ρ̃)

=
∑

(i,s)∈R

λ(i,s)
∑

p∈P(i,s)

|p|−1∑
k=1

wpk+1,pk
· (1−

(1− ρ̃(i,s),p)
k∏

k′=1

(1− ξpk′ i)),

(12)

as the expected cache gain. Observe that F is monotone in-
creasing w.r.t. all of its variables. Thus, Prob. (10) is equivalent
to the following cache gain maximization problem:

Maximize: F (ξ, ρ̃) (13a)
subj. to: (3), (4), (11) (13b)∑

p∈P(i,s)

(1− ρ̃(i,s),p) = 1, for all (i, s) ∈ R, (13c)

Gu,v(ξ, ρ̃) ≤ 0, for all (u, v) ∈ E, (13d)

where we define the flow over edge (u, v) ∈ E to be

λ(u,v)(ξ, ρ̃) =
∑

(i,s)∈R

∑
p∈P(i,s):

(v,u)∈p

λ(i,s)(1−ρ̃(i,s),p)
kp(v)∏
k′=1

(1−ξpk′ ,i),

(14)

and the overflow at (u, v) ∈ E to be

Gu,v(ξ, ρ̃) = λ(u,v)(ξ, ρ̃)− µu,v. (15)

The objective is not concave, and the constraints involving
overflow functions above are not convex. Nevertheless, the
following can be shown using the earlier analysis of [6], [17]:

Lemma 1. Function F , defined in Eq. (12), is non-decreasing
and continuous diminishing-returns (DR) submodular, and
functions Gu,v , for all (u, v) ∈ E, defined in Eq. (15), are
non-increasing and continuous DR-supermodular.

Existing algorithms for DR-submodular maximization [17]–
[19] do not directly apply to our optimization problem, as they
require constraints either being convex or containing at most
one supermodular constraint.

Algorithm 1: Primal-Dual Algorithm
Input: L(y,ψ), D.

1 t← 0, ψ(0)← 0.
2 while t < τ convergence condition is not met do
3 y(t+1) = αt argmax y∈D L(y,ψ(t))+(1−αt)y(t)
4 ψe(t+ 1) =

[ψe(t) + βtGe (y(t+ 1))]
+
, for all e ∈ E

5 t← t+ 1
6 end
7 return yk

B. Lagrangian and Duality

Consider the Lagrangian:

L(ξ, ρ̃,ψ) = F (ξ, ρ̃)−
∑

e∈E ψu,v ·Gu,v(ξ, ρ̃), (16)

where vector ψ = [ψu,v](u,v)∈E is the non-negative dual vari-
ables associated with the constraint (13d). Intuitively, the La-
grangian function L penalizes the infeasibility of the link ca-
pacity constraints. The following theorem is an immediate
consequence of Lemma 1:

Theorem 1. Function L is non-decreasing and continuous
DR-submodular.

To motivate our approach, assume we were given proper
dual variables ψ. Then, optimizing the Lagrangian converts
the cache gain maximization problem (13) to the following:

Maximize: L(ξ, ρ̃,ψ) (17a)
subj. to: ξ, ρ̃ ∈ D (17b)

where D is the set defined by constraints: (3), (4), (11), and
(13c). Prob. (17) has a non-decreasing, continuous DR sub-
modular objective, and convex constraints D.

C. Primal-Dual Algorithm

Motivated by the above observation, we propose solving
Prob. (13) via a primal-dual algorithm. The primal steps of the
algorithm reduce to solving, Prob. (17) which is a monontone
DR-submodular optimization problem with affine constraints;
though not down-closed convex or even not convex, we are
able to solve this via a polytime algorithm within a 1 − 1/e
approximation guarantee.

1) Algorithm Overview: For brevity, we join ξ(t) and ρ̃(t)
as one variable y(t) = (ξ(t), ρ̃(t)), and denote by it primal
variables. The primal-dual algorithm starts from ψ(0) = 0
and iterates over:

y(t+ 1) = αt argmax
y∈D

L(y,ψ(t)) + (1− αt)y(t), (18a)

ψe(t+ 1) = [ψe(t) + βtGe(y(t+1)]
+
, for all e ∈ E, (18b)

where αt = 2
t+2 is the parameter of momentum, βt = c√

t

is the step size, c is a constant, and [z]+ = max{z, 0}. We
summarize this also in Alg. 1, and discuss each step in detail
below:



Algorithm 2: Frank-Wolfe variant for L(y,ψ(t))
Input: L(y,ψ(t)), D′, step size γ ∈ (0, 1].

1 τ ← 0, k ← 0, y0 ← 0.
2 while τ < 1 do
3 vk ← argmaxv∈D′⟨v,∇L(y,ψ(t))⟩
4 γk ← min{γ, 1− τ}
5 yk+1 = yk + γkvk, τ ← τ + γk, k ← k + 1
6 end
7 return yk

Primal Step (18a): The primal step updates primal variables
y given dual variables ψ. It first solves Prob. (17); then, it
utilizes a momentum parameter to alleviate the change of
primal variables. Since y(t+1) is a convex combination of two
points in feasible set D, it still lies in D. We describe how
to solve (17) approximately in Sec. III-C2. The smoothing
process via the momentum is crucial, as it helps with the
convergence of the algorithm: we observe this experimentally
in Sec. IV-E.

Dual Step (18b): Finally, the dual step updates dual variables
ψ given primal variables y via dual ascent.

2) Primal Variables via Frank-Wolfe Algorithm: We solve
Problem (18a) through a variant of Frank-Wolfe algorithm,
summarized in Alg. 2. Starting from y0 = (ξ0, ρ̃0) = 0, the
algorithm iterates over:

vk = argmax
v∈D′

⟨v,∇L(y,ψ(t))⟩ (19a)

yk+1 = yk + γkvk, (19b)

where γk is the proper step size satisfying
∑

k γk = 1, gradient

∇iL(y,ψ(t)) = L(y,ψ(t)|yi=1)−L(y,ψ(t)|yi=0), (20)

and D′ is the set:

(3), (4), (11), (21a)∑
p∈P(i,s)

(1− ρ̃(i,s),p) ≥ 1, for all (i, s) ∈ R, (21b)

The difference between D and D′ lies in having inequalities
in Eq. (21b), which relaxes Eq. (13c). Note that D′ is a down-
closed convex set while D is not. The following theorem
states the approximation guarantee we attain for this algorithm
w.r.t. the (non-relaxed) Prob. (17).

Theorem 2. Let y∗ be an optimal solution to Prob. (17), and
yFW be the output of the Frank-Wolfe variant Alg. 2. Then, yFW
belongs to D, and given any ψ:

L(yFW,ψ) + C ≥ (1− 1

e
)(L(y∗,ψ) + C)−M

2K
, (22)

where constant C =
∑

e∈E ψe(
∑

(i,s)∈R λ(i,s) − µe), M =

2L(1,ψ)(|V ||C|+PTOT)
2 is the Lipschitz continuous constant,

and K = 1
γ is the number of iterations.

Proof Sketch. Frank-Wolfe variant algorithm shown in Alg. 2
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Fig. 1: Topologies and parameters of Ex1 and Abilene1 with
designed requests and bandwidths. There is a pair (red, green)
for edge (u,v), where the first red number is the weight w(v,u) and
the second green number is the link capacity µ(v,u).

is a classic method [17] for:

max
y∈D′

L(y,ψ), (23)

which is a continuous DR-submodular maximization prob-
lem under down-closed convex constraint. We first prove that
constraints D′ are binding, i.e., there exists an optimal point
y∗∗ = argmax y∈D′ L(y,ψ), such that the inequality (21b) in
D′ holds with equality (13c) in D, hence, y∗∗ ∈ D. This part is
proved by contradiction. Thus, we can infer that L(y∗∗,ψ) =
L(y∗,ψ). Similarly, yFW ∈ D is also in D′. Finally, to provide
an optimality factor, we offset L by a constant C. We provide
a 1 − 1

e performance guarantee according to Corollary 1 in
[17].

Note that, if we choose a large enough K, the offset M
2K can

become arbitrary small. The constant C is necessary to obtain
an approximation guarantee as, in general, the Lagrangian (16)
can become negative, and adding this term ensures positivity.

In practice, we found that setting the scaling factor c in
βt, defined in (18b), so that the Lagrangian remains always
positive is preferable experimentally: in some sense, ensuring
the positivity of L strikes a good balance between the two
components (cache gain and constraint penalization) of the
objective. In contrast, a negative Lagrangian indicates a high
penalization of infeasibility, and a discount of the cache gain.
Furthermore, given a gradient, algorithm (19) requires poly-
nomial time in the number of constraints and variables, which
are O(|V ||C| + |E||R|). We iterate (19) at most O(|V ||C|)
times [8].

IV. EXPERIMENTS

We conduct both synthetic and trace-driven experiments.

A. Synthetic Experiment Setup

Networks. To evaluate our proposed algorithm, we perform
experiments over five synthetic graphs, and a counter example
designed to demonstrate suboptimality of competitors (Ex).
We also experiment with three backbone network topologies.
The parameters of different topologies are summarized in
Tab. I. The weights of each edge wu,v , (u, v) ∈ E are selected
uniformly at random (u.a.r.) from 1 to 100. Each node v ∈ V
has cv storage to cache items from a catalog of size |C|. Each



TABLE I: Graph Topologies and Experiment Parameters

Graph |V | |E| |Q| |R| |P(i,s)| |cv| w |C| F 1
PD F 3

PD

synthetic topology experiments
Erdős-Rényi (ER) 100 1044 10 4949 1-5 10-20 1-100 1000 2314.9 2318.1
balanced tree (BT) 364 726 10 4988 1-5 10-20 1-100 1000 1665.2 1666.3

hypercube (HC) 128 896 10 4960 1-5 10-20 1-100 1000 3228.5 3229.4
grid 2d (grid) 100 360 10 4954 1-5 10-20 1-100 1000 5753.2 5753.7

small-world (SW) [20] 100 503 10 4953 1-5 10-20 1-100 1000 4482.1 4484.3
Ex1 7 14 2 3 1-2 0-1 1-100 2 398.8 388.7
Ex2 351.8 365.4

backbone network experiments [21]
GEANT 22 66 4 4761 1-5 10-20 1-100 1000 4436.2 4440.7

Deutsche Telekom (DT) 68 546 4 4929 1-5 10-20 1-100 1000 2014.7 2030.0
Abilene1 11 28 3 4 1-2 0-1 1-100 4 814.3 901.0
Abilene2 761.4 789.4

trace-driven experiments
KS1 152 22952 101 1988 1-5 25-3195 1-100 526 19938.5 19946.7
KS2 152 22952 103 4963 1-5 50-6390 1-100 1207 35353.1 35349.4

item i ∈ C is stored permanently in one designated server
Si which is picked u.a.r. from V ; the item is stored outside
the designated server’s cache. For Ex and Abilene, we
select parameters in a way demonstrated in Figs. 1a and 1b,
respectively.
Requests. We generate requests synthetically as follows. We
select u.a.r. a set of Q nodes from V as the possible query
nodes. The set of requests R ⊆ C × Q is then generated by
sampling from the set C × Q, u.a.r. For each such request
(i, s) ∈ R, we select the request arrival probability λ(i,s)
according to a Zipf distribution with parameter 1.2. For each
request (i, s) ∈ R, we generate at most |P(i,s)| paths from the
source s ∈ V to the designated server Si, where the source
s and the designated server Si are not the same node. In all
cases, this path set includes the shortest path to the designated
server. We consider only paths with stretch at most 4; that
is, the maximum cost of a path in P(i,s) is at most 4 times
the cost of the shortest path to the designated source. We
follow a different synthetic request generation process for Ex
and Abilene, based on the “hard” examples we describe in
[16], on which we prove that competitors may fail to produce
feasible solutions.
Link Capacities. To control the level of congestion in the net-
work, we determine link capacities µu,v, (u, v) ∈ E as follows.
We first randomly sample cv items i and set ξv,i = 1, for all
v ∈ V , and set ρ̃(i,s),p = 1

|P(i,s)|
, for all p ∈ P(i,s), (i, s) ∈ R.

Then, we set the link capacities as µu,v = κλ(u,v)(ξ, ρ̃) cor-
respondingly, where λ(u,v) is the flow on edge (u, v), given
by Eq. (14), and κ ≥ 1 is a looseness coefficient: the higher
κ is, the easier it is to satisfy the link capacity constraints.

B. Trace-Driven Experiment Setup

Finally, we also conduct trace-driven simulations using data
from a short video application, Kuaishou (KS) [22]. This com-
prises more than 8 million requests of 2 million items/videos
reaching 488 Kaishou edge servers deployed at 31 provinces in
China within 5 mins. The network topology (including nodes,
links, and link and cache capacities) are determined from an

actual cache deployment by Kuaishou. We preprocess the data
to create two instances (KS1 and KS2), whose statistics are
summarized in Tab. I, as follows.

We select the largest connected subgraph, and utilize 1
4 and

1
2 of caches equipped by each node for our experiments KS1
and KS2, respectively. In KS1, we restrict traffic of top 2000
popular requests, while in KS2 we restrict traffic to the top
5000 popular requests. We again generate all paths of stretch at
most 4; we drop any request that does not contain any paths
in the largest connected component, leading to the numbers
reported in Table I. We use these to compute request prob-
abilities λ(i,s) ∈ [0, 1]; to do so, we normalize each request
frequency by the frequency of the most popular request. As
we limit traffic to a subset of the entire demand, we scale link
capacities in KS1 and KS2 both by 1

2250 .

C. Algorithms

We implement our algorithm and several competitors2 for
comparison purposes. Our main building blocks when con-
structing competitors are combinations of algorithms that make
caching and routing decisions separately.

In particular, building blocks for caching are: (a) uniform
caching, whereby cache contents are selected uniformly among
requests that traverse the cache, (b) greedy caching, whereby
the greedy algorithm [23] is used to allocate items to caches,
and (c) Frank-Wolfe variant caching, where the Frank-Wolfe
variant algorithm [17] is used to determine cache contents;
all three variants (a)–(c) are classic, but ignore edge capacity
constraints. The classic greedy algorithm is a 1/2 approxima-
tion [8], [23], while the Frank-Wolfe variant [17] achieves
1 − 1/e. We combine these caching algorithms with optimal
routing, which amounts to fixing a caching strategy, and com-
puting routing decisions by solving Prob. (13) w.r.t. routing
decisions alone; this is a convex optimization problem with
affine constraints, and can be solved in polynomial time.

2Our implementation is publicly available at https://github.com/neu-
spiral/CacheRateNetwork.

https://github.com/neu-spiral/CacheRateNetwork
https://github.com/neu-spiral/CacheRateNetwork
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(a) Looseness coefficient κ = 1
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(b) Looseness coefficient κ = 3

Fig. 2: Comparison w.r.t. gain, InF and running time. Missing bars in
cache gain plots indicate infeasibility, while missing bars in InF plots
indicate 0 violation. PrimalDual and competitors perform very
well when they are feasible. Nevertheless, PrimalDual is always
feasible for all topologies, while competitors fail to get a feasible
solution in some cases. This comes at the cost of the increased
complexity of PrimalDual, reflected also on the running time.
However, when κ is large, i.e., κ = 3, as PrimalDual converge
faster, it takes even less execution time compared to competitors.

Overall, we implement the following combinations of these
building blocks: Random1, that uses uniform caching first
and then optimal routing; Random2, that performs optimal
routing under empty caches first, and then performs uniform
caching; Greedy1, that uses greedy caching first and then
optimal routing; Greedy2, that uses optimal routing under
empty caches first, and then greedy caching; Alternating,
that alternates (until convergence) between obtaining a caching
state via the Frank-Wolfe variant algorithm and optimal rout-
ing; and PrimalDual is demonstrated in (18). Additional
implementation details are described in [16]. In [16], we prove
that all of the above competitors (Random1–Alternating)
can lead to arbitrarily suboptimal solutions.

D. Performance Metrics

We use cache gain, defined in Eq. (12), as one metric to
measure the performance of different algorithms. Also, we
define an Infeasibility metric to measure how much solutions
violate link capacity constraints. Intuitively, we measure infea-
sibility as the average overflow, normalized by edge capacities,
across all active edges in the network. Formally:

InF =
1

|E′|
∑

(u,v)∈E′

Gu,v(ξ, ρ̃)1Gu,v(ξ,ρ̃)>0

µu,v
, (24)
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(a) with momentum and κ = 1
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(b) without momentum and κ = 1

Fig. 3: Convergence over topology Ex1, w.r.t. the cache gain, the
Lagrangian L, and infeasibility metrics InF and MaxInf. With
momentum, algorithm converges faster and smoother.

where overflow Gu,v(ξ, ρ̃) is defined in Eq. (15), and E′ =
{e ∈ E : λe((ξ, ρ̃) > 0} is the set of edges with non-zero
flow, and flow λe is defined in Eq. (14). We say algorithms
Alternating and PD algorithm converge, when InF ≤
0.001 and cache gain changes less than 0.001 compared to the
last iteration. We also report MaxInF, which is the maximum
rather than average over E′. Clearly, larger InF/MaxInf in-
dicates more violations and worse performance. For our algo-
rithm PrimalDual, we expect some negligible edge capacity
constraint violation, of the order of InF ∼ 10−2. Whenever
CVXOPT fails to find a feasible solution, we are unable to
compute this score, so we set InF = 106, to indicate a severe
feasibility failure.

E. Experiment Results

Different Topologies. We first compare the proposed algo-
rithm (PrimalDual) with baselines in terms of the normal-
ized cache gain F

FPD
, Infeasibility InF, and running time of

algorithms, shown in Fig. 2. The cache gain FPD is obtained by
PrimalDual algorithm, and its value is reported in Tab. I:
F 1
PD is the cache gain when κ = 1, while F 3

PD when κ =
3. When algorithms obtain no feasible solutions, normalized
cache gain and infeasibility are set 0 and 106, correspond-
ingly. Observe that PrimalDual, Greedy1, Greedy2 and
Alternating behave great w.r.t. cache gain when they are
feasible. However, even though PrimalDual always pro-
duces a feasible solution (with InF ∼ 10−2 consistently),
solutions of other algorithms are infeasible in some topologies.
This is because PrimalDual jointly optimizes both caching
and routing decisions. In other words, in every intermediate
step, it takes link capacity constraints into consideration. In
contrast, competitors decouple routing and caching optimiza-
tion, ignoring link capacity constraints in the latter. This ver-
ifies the suboptimality of competitors. These advantages of
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Fig. 4: Effect of looseness over Abilene2, GEANT and KS1, respec-
tively. PrimalDual is best or competitive with other algorithms, but
also finds a feasible solution for a wider range of κ values.

PrimalDual come at the cost of increased running time;
nevertheless, with larger looseness κ, PrimalDual converges
faster, sometimes even outperforming simpler methods.
Convergence. We focus on Ex1 to understand the conver-
gence of proposed PrimalDual. Fig. 3a demonstrates the
convergence with momentum (defined in Eq. (18a)). Both cache
gain and infeasibility converge smoothly and quickly. On the
other hand, without momentum, i.e., for αt = 1, both cache
gain and infeasibility exhibit jitter, as shown in Fig. 3b. Algo-
rithms without momentum tend to converge to a more infeasi-
ble solution. Overall, incorporating momentum in primal steps
avoids oscillations in primal variables and promotes faster and
smoother convergence.
Effect of Looseness. Figs. 2, 4 and Tab. I all present results
with different looseness coefficient κ. When looseness κ is
small, i.e., link capacity constraints are strict and hard to sat-
isfy, competitors are more likely to lead to infeasibility. It is
clear from Fig. 2 and Tab. I that, in general, higher κ leads to
higher cache gain, less infeasibility and faster convergence/less
execution time. This is also indicated directly in Fig. 4: if al-
gorithms have no results at some κ, this indicates infeasibility.
In contrast, although not always obtaining the highest cache
gain, our proposed PrimalDual always yields a solution,
and is near-optimal.

V. CONCLUSION

We jointly optimize both caching and routing decisions un-
der bounded link capacity constraints over an arbitrary net-
work. We propose a poly-time primal-dual algorithm, where
only primal steps have an approximation guarantee. We use
a momentum method to alleviate sharp changes in primal
variables. Instead, we could explore a proximal method [24],
[25] to realize it. As we only provide approximation guarantees
for primal steps, another direct and crucial future direction is to
propose an algorithm with end-to-end optimality guarantees.
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