
Joint Optimization of Storage and Transmission via
Coding Traffic Flows for Content Distribution

Derya Malak∗, Yuanyuan Li†, Stratis Ioannidis†, Edmund M. Yeh†, and Muriel Médard‡
∗EURECOM, Sophia Antipolis, FRANCE, derya.malak@eurecom.fr

†Northeastern University, Boston, MA, USA, {yuanyuanli,ioannidis,eyeh}@ece.neu.edu
‡RLE, MIT, Cambridge, MA, USA, medard@mit.edu

Abstract—We provide a flow-based coded caching framework
for information centric networks. We jointly optimize delivery
rates, cross coding, and cache contents allocation as a function
of demand and the network’s topology. Our model accounts for
storage and transmission costs, demand asymmetry, and arbitrary
multi-hop topologies, and relies on an ordered flow-based decoding
schedule for the transmissions created by pairwise coded flows.
Through extensive experiments over multiple topologies, we
observe that our coded caching scheme reduces transmission costs
over competitors by several orders of magnitude.

Index Terms—Coded caching, wireless, cross-coding, memory-
bandwidth tradeoff, demand asymmetry, unicast, multicast.

I. INTRODUCTION

Caching has been used extensively to alleviate backhaul
capacity bottlenecks by moving the content closer to the edge.
Determining the optimal placement of files for maximizing
the cache hit rate or caching gain is NP-hard [1], and ap-
proximation algorithms have been studied extensively in this
setting [1]–[3]. Recently, joint optimization frameworks have
been proposed to understand the tradeoffs between caching
and routing [4], [5], computing [6], scheduling [7], and power
control [8]. In this work, we leverage coding to facilitate
file transmission in both wired and wireless caching net-
works. Exploiting coding relaxes the combinatorial structure
of existing NP-hard solutions, as it inherently converts the
integer optimization problems into continuous optimization
problems, simultaneously eliminating the need for rounding
techniques [9]. Moreover, via both caching and cross-coding,
users can obtain the required number of degrees of freedom
(DoF) to decode a file via fewer transmissions, providing
additional resource savings.

After the publication of the landmark paper by Maddah-Ali
and Niesen [10], various facets of coded caching have been in-
vestigated. These include benefits over uncoded caching [11],
memory-bandwidth tradeoffs [12], cache size versus the cat-
alog size [13], demand distribution, and multicasting and
unicasting opportunities [14], to name a few. We depart from
[10] and follow-up works by assuming asymmetric demand
over an arbitrary topology; as a result, our request schemes do
not conform to a scenario that favors multicasting. This comes
at the cost of restricting our coding schedule to be ordered
over pairwise coded traffic. However, our coded cache scheme
exploits the utility of both unicast and multicast transmissions,
jointly optimizing caching, delivery rates, and cross-coding

across contents. Hence, our design lies somewhere between
the fully uncoded and fully coded frameworks.

More specifically, we consider a flow-based coded caching
network model that incorporates costs accrued by both delivery
and caching. Both coded as well as cross-coded content can
be stored at arbitrary nodes in the network, and subsequently
transmitted and routed to meet demand. The demand distribu-
tion is asymmetric, and our model thus requires a mixture of
unicast and multicast transmissions. In the phase of delivery,
each flow can be either self-coded or cross-coded across differ-
ent files using network coding techniques [15]. Our cost model
is general: it encompasses different cost functions for both
transmission and caching, enabling us to quantify the relative
cost of caching versus delivery. Our coded caching scheme
aims to serve demand by optimizing across the possible ways
of generating self-coded and cross-coded transmission flows,
leveraging the benefits of both uncoded and coded caching.

Our main contributions can be summarized as follows:
• We provide a flow-based coded caching framework over

arbitrary network topologies by incorporating transmis-
sion as well as storage costs.

• In the proposed framework, traffic flows are self-coded
or cross-coded in pairs. Coding enables the end user
to extract the required number of degrees of freedom
with the help of caching at the local storage, which
naturally eliminates the redundancy in models that rely on
uncoded transmissions. Cross-coding increases the deliv-
ery capacity of the system, while introducing additional
system optimization parameters (namely, the rates of the
delivered and stored cross-coded traffic).

• By restricting the cardinality of cross-coded traffic, and
imposing and exploiting an ordered decoded schedule,
our system design that amounts to a tractable, convex op-
timization problem. The latter jointly optimizes caching,
delivery, and cross-coding over the (arbitrary) network
topology, under heterogeneous demand.

• We extensively evaluate our proposed framework over
several synthetic and real-life topologies. Our framework
significantly outperforms competitors, reducing transmis-
sion costs by several orders of magnitude.

The rest of the paper is organized as follows. In Section II
we provide a comprehensive review of the related literature. In
Section III we detail our cache network model. We propose
a coded caching scheme by jointly minimizing the costs of

1

Uncoded

�t1 �t2 �t3�t4

Demand vector

Cache

wv(xv)

we(ze)

u

�t

Cache Cache
v t

Self-coded
flow

(a) Self-coded setting with
no cross-coded files.

Cross-coded
flow

Coded

�t1 �t2�t3�t4

Demand vector

Cache

wv(xv)

we(ze)

u

�t

CacheCache
v t

(b) Coded setting with
self-coded or cross-coded files.

Fig. 1: A general coded caching network with asymmetric de-
mands. Caches are indicated as tall boxes where each distinct
file has a different pattern and each cache can contain self-
coded or cross-coded files, i.e., bars with different patterns.
Demand vectors are shown as bar graphs. Flows are indicated
by arrows. The parameter me(ze) denotes the delivery cost of
flow rate ze across edge e, and wv(xv) represents the caching
cost of storage load xv at node v.

delivery and caching in Section IV. In Section V, we run
extensive simulations and demonstrate the gains of the flow-
based coded caching framework versus the competitors over
various topologies.

II. RELATED WORK

Erasure coding has been extensively studied in the context
of storage systems. Examples include regenerating codes to
reduce repair bandwidth [15], storage-bandwidth trade offs
[12], erasure coded distributed system design and maximizing
the service rate region [16], and erasure coded atomic (strongly
consistent) distributed read and write storage service [17]. We
depart by using random linear network codes, that lead to
different feasibility regions than above works.

Network coding has been shown to achieve capacity in
multicast transmissions with polynomial encoding/decoding
complexity [18]. It is exploited for minimum cost multicasting
[19], and to minimize total cost of edge using flow splitting
[20]. Inter-session coding, i.e., coding of packets belonging to
different sessions, has been proposed for enhancing distributed
operation with simple scheduling and adaptability to unknown
topologies [21]. The tradeoff between delay versus coding
efficiency has been studied to minimize transmission cost and
packet delays via a control policy that relies on queue lengths
[22]. None of these works considers the impact of caching.

Physical layer caching with or without coding has been
widely studied to optimize wireless networks. The gain offered
by local caching and broadcasting is characterized in the land-
mark paper by Maddah-Ali and Niesen (MAN) [10], where
a single multicast transmission suffices to meet the demand
which is assumed to be symmetric, and the placement cost is
not accounted for. Extensions of MAN include the analysis of
the scaling of the per-user throughput and collaboration dis-
tance [23], the determination of the wireless caching capacity

region [24], as well as single-hop and device-to-device delay
[10], [23], [25]. Coded caching has been leveraged for wireless
networks [26], and network coded storage has been devised
for scheduling [27]. We depart by studying complex network
topologies, in both the wired and wireless regimes, restricting
however our coding scheme to pair-wise cross-coding under
a pre-defined order.

Alternatively, there has been research focusing on jointly
optimizing the caching gain and resource usage. These ef-
forts include decentralized optimization via femtocaching to
minimize the download delay [1], distributed caching for
content distribution networks (CDNs) [28], and distributed
optimization of caching gain for given routing [2]. Throughput
and delay scaling in content-centric networking (CCN) has
been analyzed [29], and the cost of storing and accessing
objects has been minimized by building Steiner trees [30],
or mixing Steiner trees [31], where the throughput benefits
of network coding equal the integrality gap of the Steiner
tree formulation. Complementing the host-centric paradigms,
information-centric networking (ICN) architectures have been
explored to optimize both bandwidth and storage for efficient
content distribution [32], minimizing network latency [33].
Other works include jointly optimizing caching and routing
for latency guarantees [34], caching for minimizing delay in
the presence of congestion [35], and energy-efficient caching
with multipath routing to balance the cost of transmissions
and caching via the multicast and unicast delivery modes [14].
However, these works have not incorporated coding.

Several works extend the MAN single-file-retrieval problem
in [10]. The MAN scheme under the constraint of uncoded
cache placement to achieve the minimum worst-case load
among all possible demands has been studied in [13]. An
improved delivery scheme when files are demanded multiple
times to minimize the worst case load under uncoded place-
ment has been proposed in [36]. The memory and rate tradeoff
for coded caching has been characterized within a factor of 2 in
[11]. Other extensions of [10] include its application to D2D
caching [37], private coded caching [38], coded distributed
computing [39], requesting multiple files [39], meeting lin-
ear and polynomial queries [40], retrieving general functions
and understanding how the optimal worst-case load increases
[41]. However, to the best of our knowledge, none of these
extensions considers jointly the effects of delivery, demand
asymmetry, mixing of self and cross-coded files, along with
exploiting the benefits of unicast and multicast transmissions.

III. PROBLEM FORMULATION

We consider a network of interconnected nodes forming
a caching network. Individual nodes retrieve files from a
finite catalog. All nodes in the network are capable of (a)
storing files, (b) receiving and forwarding encoded traffic, but
also (c) decoding and encoding traffic prior to forwarding. In
particular, with respect to (c), nodes are also able to cross-
code traffic across pairs of files. Subject to costs associated
with transmitting traffic, as well as storing files, the purpose

2

Self-coded traffic

Cross-coded traffic with 2 types

Storage of node !

"#, "%, "&, … , "()	 RLNC comb.
of {",}

Coded packets
./ = 12/,,	. ",

()

,4#

2/,, : global encoding vector

Storage of node !

"#, "%, … , "5	
6#, 6%, … , 67		

8/ = 9 + ;

./ = 12/,,	. ",
5

,4#
+12/,,	. 6,

7

,4#

Decoding to
obtain 	{",} via
Gaussian elimination

Decoding to
obtain 	{",}
and		{6,}

Recovering
files

Recovering
files

RLNC comb. of
{",}	and	{",}

Fig. 2: RLNC for self-coded and cross-coded flow types.

of our system design is to jointly determine (a) how to cross-
code traffic, (b) traffic flows, and, most crucially (c) where to
store files, in order to meet demand. We elaborate on each of
these issues in detail below.

A. Cache Network and Demand

More formally, we represent a cache network as a directed
graph G(V,E), with nodes V and edges E ⊆ V × V .
Nodes in the network wish to retrieve files from a catalog
C. Every node in the network has storage capabilities, and
uses a random linear network code (RLNC) [42] to store
(parts of) files in the catalog: that is, we assume that every
file in C is partitioned sequentially into smaller stages; each
stage is further partitioned into (uncoded) packets or chunks,
and nodes can store random linear combinations of these
uncoded packets. These random linear combinations, i.e., the
coded packets, represent the DoF necessary to retrieve the
stage. We assume that files and stages are large enough that
a flow model, determined by mean transmission rates, is a
good approximation of the system dynamics.1 We illustrate
the coding and decoding principles of RLNC via a simple
example in Fig. 2, where coded packets in the storage of nodes
are represented by variables qk or rk.

We define a set of targets T ⊆ V that act as content
receivers (or traffic sinks). Every node t ∈ T is associated
with a demand vector:

λt = [λt,i]i∈C ,

where λt,i ∈ R+ is the request rate, i.e., the intensity of the
request process for coded packets of type i ∈ C at t ∈ T .
Intuitively, if [0, T] is the duration of the entire operation
period, then λt,i×T is the total number of coded packets/DoF
that t needs to acquire during this period. Hence, if t is
to acquire the entire file i, we can think of λt,i as being
proportional to the file size. Nevertheless, it is possible that
the rates are higher for certain targets, to capture stringent
delivery time requirements.

B. Caching Decisions and Storage Costs

As stated above, every node in the network can store and
transmit coded packets of files in C. Our use of an RLNC
allows us to abstract caching decisions as follows: for every

1As is typical [18], we assume that random weights used in coded
packets are stored and transmitted along with coded packets, at a small
(polylogarithmic) overhead compared to the payload. These weights can be
used at a receiver to decode the packets.

i ∈ C and v ∈ V , we denote by xv,i ∈ R+ the caching rate,
i.e., the rate with which node v can be used to produce coded
packets of file i. The caching rates admit two possible physical
interpretations:

1) Assuming that caches are memory-bound, meaning that
storage is a limited resource, the caching rate xv,i can
be thought of as being proportional to the number of
coded packets (across stages) that node v stores. In other
words, if [0, T] is the total operation period, then xv,i×T
is the total storage consumed at v to be able to produce
coded packets for file i at rate xv,i.

2) If caches are I/O-bound, xv,i can be thought of as
the rate with which coded packets can be read from
the storage device. As memory becomes increasingly
cheap, it may be possible to store the entire file at v
(i.e., v stores equal to or even more DoF than the ones
required to reconstruct every stage), and xv,i is simply
the throughput of the I/O connection to storage.

We stress here that, in either interpretation xv,i are rates, and
correspond to, e.g., coded packets per second.

Beyond coded packets for individual files, we also allow
storing cross-coded packets: these are random linear combi-
nations of chunks across a stage of file i and a corresponding
stage of file j. The total storage load of node v ∈ V is then:

xv =
∑

i∈C xv,i +
∑

i,j ̸=i,(i,j)∈C2 xv,(i,j). (1)

We assume that storing content incurs the aggregate cost:
∑

v∈V wv (xv) , (2)

where wv : R+ → R+ is a convex non-decreasing function
capturing storage costs.

Alternatively, we can introduce hard constraints. E.g., for
memory-bound caches, we can have constraints of the form
xv ≤ cv/T , where cv ∈ R+ is the storage capacity of v ∈ V .
Similarly, in I/O bound caches, we can have constraints of the
type xv ≤ µv , where µv is the capacity of the I/O link. Both
such hard constraints and soft-penalties of the form in Eq. (2)
are permissible in our model.2

C. Traffic Flow and Bandwidth Costs

Traffic carrying flow for file i can be potentially generated
at every node storing file i, traverse the network, and be
consumed by target nodes requesting i. We consider two types
of traffic. The first type corresponds to the coded traffic flow
associated with file i ∈ C. The second type of flow corresponds
to cross-coded traffic flow associated with files i, j ∈ C. In
this case, cross-coded traffic flow corresponds to a (linear)
combination of flows corresponding to files i and j ̸= i. The
amount of cross-coded traffic that can be generated at node v
is determined by the quantities of incoming cross-coded traffic
and coded traffic flows associated with single files.

We denote by ze,i the physical traffic rate on an edge e =
(u, v) ∈ E associated with (non-cross-coded) traffic for file
i ∈ C. Similarly, we denote by ze,(i,j) the physical rate on an

2Though hard constraints may make meeting demand infeasible.

3

edge e ∈ E associated with traffic resulting from cross-coding
between i and j. The total physical flow over e ∈ E is then

ze =
∑

i∈C ze,i +
∑

i,j ̸=i,(i,j)∈C2 ze,(i,j). (3)

Traffic flowing over an edge e ∈ E incurs a cost. The total
network cost due to delivery is given by:

∑
e∈E me(ze), where

me : R+ → R+ is a convex non-decreasing function that maps
the load at edge e ∈ E to the corresponding cost.

D. Problem Statement

Generally, we aim to solve the following problem:

Minimize:
ze, xv

∑
e∈E me(ze) +

∑
v∈V wv(xv) (4a)

subj. to: flow and demand constraints. (4b)

That is, we wish to minimize costs due to caching and
transmission across edges, while (a) respecting flow preser-
vation constraints across nodes, and (b) meeting demand, i.e.,
ensuring that coded packets arrive at the target nodes at the
desired rates. We will describe both types of constraints in
great detail. In doing so, we determine both (i) where self-
coded and cross-coded file contents are to be stored at/served
from, via the respective caching rate variables, (ii) how self-
coded and cross-coded traffic are to be routed along the
network, and, concurrently, (iii) what is the relative balance in
resource usage across self-coded and cross-coded traffic w.r.t.
both resources (caching and transmission).

Formally stating the constituent constraints (a)-(b), and ac-
complishing (i)-(iii), poses several challenges. First, allowing
for cross-coding across multiple files can potentially lead to
a combinatorial explosion of variables. Second, cross-coded
traffic can be utilized in a variety of ways: for example, cross-
coded packets of type (i, j) can be used along with (decoded)
self-coded packets of type i to produce decoded packets of
type j, or combined together to produce decoded packets of
both i and j. The RLNC solution, as shown in Fig. 2, captures
the cross-coding mechanism, through encoding different traffic
types and decoding these mixtures. However, packets/DoF that
were used for the former type of decoding cannot be used
for the latter type of decoding. This creates a complicated
set of flow preservation constraints, and a need for careful
management of flows at each node to determine the flow
preservation rules as well as how demand can be met.

We address the above issues in the following ways. First, the
combinatorial explosion of variables is addressed by restricting
cross-coding to pairs of files, as introduced so far. Second, the
management of cross-coded traffic is accomplished by impos-
ing and exploiting an ordering on how traffic for different files
is decoded. These assumptions yield a tractable formulation of
the optimization in Eq. (4), which we describe next.

IV. JOINT CACHING, CROSS-CODING,
AND FLOW OPTIMIZATION

A. Book-keeping and Meeting Demand

We first introduce additional variables to capture the amount
of physical flow that can be used to satisfy demand at targets.

We denote by ρte,i and ρte,(i,j) the portion of the self-coded and
cross-coded traffic on an edge e ∈ E that can be used to serve
demand at target t, respectively. Note that physical traffic can
be reused across targets. These variables should satisfy:

ρte,i ≤ ze,i, for all e ∈ E, i ∈ C, t ∈ T , (5)

ρte,(i,j) ≤ ze,(i,j), for all e ∈ E, (i, j) ∈ C2, i ̸= j, t ∈ T . (6)

Similarly, portions of the caching rates in nodes can be used
to serve demands at targets. We indicate this via variables:

ξtv,i ≤ xv,i, for all e ∈ E, i ∈ C, t ∈ T , (7)

ξtv,(i,j) ≤ xv,(i,j), for all e ∈ E, (i, j) ∈ C2, i ̸= j, t ∈ T . (8)

These portions characterize the (potential) amount of caching
rate traffic for file i, present at node v, which can be used in
service of target t. Intuitively, these “book-keeping” variables
will help ensure that the rates ze,· and xv,· are sufficient to
meet demand in every target.

Correspondingly, demand at a target node is met by decoded
traffic for requested files. We assume that every node, includ-
ing non-targets, decodes incoming traffic (to serve demand in
case of targets), but also to recode it and forward new random
linear combinations towards other nodes. Both incoming traffic
and stored content can be used to decode files at different
nodes. In particular, let µt

v,i be the rate with which node v
can decode content file i, that could subsequently be used
to serve t. Then, decoded content can be used to generate
outgoing traffic. In particular, outgoing traffic flow at every
node should satisfy: for all v ∈ V, i ∈ C, t ∈ T .

µt
v,i ≥

∑
u:(v,u)∈E ρt(v,u),i. (9)

Similarly, outgoing cross-coded traffic flow is governed by:

2min(µt
v,i, µ

t
v,j) ≥

∑
u:(v,u)∈E ρt(v,u),(i,j), (10)

for all v ∈ V, i, j ∈ C, t ∈ T . This is due to the fact that any
pair of decoded packets of i and j can be used to generate a
pair of cross-coded packets of flow (i, j).

Finally, demand should be met; to that end:

µt
t,i ≥ λt,i, for all t ∈ T , (11)

i.e., the decoding rate at each target should exceed the demand.
We next turn our attention to how incoming traffic and stored
content can be used to decode files.

B. Decoding Traffic

We assume that, the transmission of each stage is associated
with a timeslot, where the schedule of when and where each
packet is injected is given a priori [18]. Within each timeslot,
every node follows an ordered decoding scheme: if i < j,
then i is decoded before j. This leads to four different types
of decoding to serve t ∈ T with respect to file i ∈ C:

(i) Type-A (decoding pure i). This flow type models the
uncoded or self-coded available traffic for i at node v:

TAtv,i =
∑

u:(u,v)∈E ρt(u,v),i + ξtv,i .

4

TAt
v,i

TBt
v,i

TCt
v,i

TDt
v,i

P
u:(u,v)2E

⇢t
(u,v),i ⇠t

v,i

P
u:(u,v)2E

⇢t
(u,v),(h,i) ⇠t

v,(h,i)

P
u:(u,v)2E

⇢t
(u,v),j ⇠t

v,j

Min(. , .)

P
u:(u,v)2E

⇢t
(u,v),(i,j) ⇠t

v,(i,j)

Cross-coded traffic

Self-coded traffic

𝑖, ℎ

CODED OPERATION

ℎ < 𝑖

𝑖

𝑢 𝑣

𝑢 𝑣

𝜇!,#$

𝑗
𝑖 < 𝑗

𝑖, 𝑗
𝑖 < 𝑗

𝑢 𝑣

𝑢 𝑣

TA!,%$

Self-coded traffic

Cross-coded traffic

TB!,%$

𝑗 > 𝑖	is accounted for
after 𝑖 is decoded

DECODED

𝜇!,&$

𝜇!,%$

+

+

+

+
Readily
available
/decoded

1
2
	1 	−		 1	 '

Min(. , .)

NOT DECODED YET

Fig. 3: Different types of decodings to serve t with respect to file i. Types TAtv,i-TD
t
v,i are listed in the order of decoding.

This comprises incoming traffic w.r.t. file i as well as DoF
stored at v.

(ii) Type-B (decoding i with previously decoded traffic
h < i). This flow type models the cross-coded traffic flow
(mixture) that exploits all previously decoded h < i, that are
presently available at node v:

TBtv,i =
∑

h<i min
(∑

u:(u,v)∈E ρt(u,v),(h,i) + ξtv,(h,i), µ
t
v,h

)
.

In this case, i is decoded using a mixture of i and h, where
h < i, and pure (i.e., already decoded) h which is available at
a rate µt

v,h. Hence, TBtv,i is the effective amount of traffic for
i extracted from the aggregate available mixture of all h < i.

(iii) Type-C (recoding to extract i without decoding pure
traffic j > i). This flow type models the traffic for file i to
be decoded by cross-coded traffic with files j > i, which has
arrived at node v but has not yet been decoded:

TCtv,i =
∑

j>i min
(∑

u:(u,v)∈E ρt(u,v),(i,j) + ξtv,(i,j),∑
u:(u,v)∈E ρt(u,v),j + ξtv,j

)
.

In addition to pure j, node v has a mixture of files i and any j.
This, combined with the flexibility of recoding with no need
for intermediate decoding, ensures decoding of i. As in Type-
B, the effective amount of traffic node v can extract for file
i is the sum over all j > i of the minimum of the available
mixture of j with i and the incoming flow (as opposed to
existing decoded traffic). Meanwhile, pure j is available but
not decoded, which contributes to flow TAtv,j after i is decoded.

(iv) Type-D (recoding to extract i from the leftover cross-
coded traffic (i, j)). This type models the traffic for i to be
decoded using the mixture with j such that j > i. After
decoding Types B and C, the remaining cross-coded traffic
is used at node v to produce uncoded traffic for both i and j.

TDtv,i =
∑

j>i
1
2

[∑
u:(u,v)∈E(ρ

t
(u,v),(i,j) + ξtv,(i,j))

−(
∑

u:(u,v)∈E ρt(u,v),j + ξtv,j)
]+

,

where [x]+ is x if x > 0 and zero otherwise. The effective
DoF of this residual mixture to the traffic for i is half of the
original DoF since two DoFs in the mixture are required for

one DoF of i (while also giving one DoF for j). Note that
decoding of Type D also produces pure traffic of type j, i.e.,
TBtv,j . This is accounted for in µt

v,j as Type B traffic.
As a result of combining these processes (Types A-D), we

have that for all v ∈ V , t ∈ T , i ∈ C:

TAtv,i + TBtv,i + TCtv,i + TDtv,i ≥ µt
v,i . (12)

We illustrate the different types of decodings (Types A-D listed
in the order of decoding) in Fig. 3. We note that the asymmetry
between Types B and C, D implies that constraints depend on
the order of the files, as imposed by their indices i, j, . . . ∈
C. This is a design choice: the system is parameterized by
which files it decodes first. Moreover, this ordering need not
be global: every node could potentially have its own ordering,
leading to a different formulation of constraints (12). Finally,
the proposed scheme need not be constrained cross coding of
pairs; combinations could be extended to triplets, quadruplets,
etc., increasing the number of constraints from quadratic (in
the number of files) to cubic etc. We nevertheless restrict to
pairs for simplicity and for reducing problem complexity.

C. Optimization

Before we formally state the form optimization problem (4)
takes, we revisit in detail the decision parameters we have so
far. The unknowns are caching xv,i, xv,(i,j), transmission loads
ze,i, ze,(i,j), portions of caching for demands ξtv,i, ξtv,(i,j),
portions of transmission loads for demands ρte,i, ρ

t
e,(i,j), which

are self-coded and cross-coded, respectively, and decoding
rate µt

v,i. From a flow-conservation perspective, we obtain the
following optimization problem that minimizes the aggregate
cost of delivery and caching:

Minimize:
ze, xv

∑
e∈E me(ze) +

∑
v∈V wv(xv) (13a)

subj. to: constraints (1), (3), and (5)–(12). (13b)

We note that, if weight functions are convex, the optimiza-
tion Prob. (13) is convex; the convexity of all constraints is
easy to verify for all cases except (12). We next show that
(12) is also convex. We thus could solve the convex program
(13) through classic solvers [43].

5

TABLE I: Graph Topologies and Experiment Parameters

Graph |V | |E| |T | |C| Cost
synthetic topology

Erdős-Rényi (ER) 50 256 5 25 23
grid 64 224 5 25 34206

hypercube (HC) 64 384 5 25 40
expander 64 444 5 25 37

small-world (SW) [44] 64 306 5 25 52
Barabási and Albert (BA) [45] 50 282 5 25 18

Watts-Strogatz (WS) [46] 50 100 5 25 2826
backbone network [47]

GEANT 22 66 5 20 17
Abilene 11 28 5 50 0.15

Deutsche Telekom (Dtelekom) 68 546 5 20 4186
hierarchy topology

Maddah-Ali and Niesen (MAN) 3 2 2 4 -
Tree 14 13 9 20 -

Lemma 1. The set of constraints (12) is convex.

Proof. Type A decoding flow is an affine function. The min-
imum of affine functions is concave, hence Type B decoding
flow is also a concave function. Finally, the sum of Type C
and Type D is also a concave function due to:

min(a, b) + 1
2 [a− b]+ = 1

2 [a+min(a, b)],

which is concave since the min operator is concave.

V. PERFORMANCE EVALUATION

In this section, we provide a comprehensive evaluation of
the flow-based coded caching scheme to understand the utility,
capacity, and bandwidth tradeoffs for different topologies.

A. Experiment Setup

To evaluate our scheme, we perform simulations over gen-
eral topologies (synthetic topologies, and backbone network
topologies), and two hierarchy topologies. These topologies
and their parameters are summarized in Table I.
Settings for General Topologies. To simulate a distribution
network, we “embed” a backbone/CDN-like topology in arbi-
trary topologies as follows. First, for every node v ∈ V we
compute the average distance to other nodes d(v) =

∑
u

d(v,u)
|V |−1

and the node centrality c(v) = 1/d(v). Then, we assign the
transmission cost function of edge (u, v) ∈ E as

me(z(u,v)) = z
α(d(u)+d(v))+β
(u,v) ,

where α = 10, and β = −20min d(v) + 1 are selected so as
to get a range of exponents larger than 1 (so that the function
is convex), and the cache capacity of node v ∈ V is given as

cv = α′c(v) + β′,

where α′ = 3 and β′ = −3min c(v) + 1 are selected again
to get a wide range of cache values larger than 1. Intuitively,
the more central a node is, the higher its storage capacity,
and the higher the throughput of closeby edges (as captured
by more lenient penalties). We uniformly at random (u.a.r.)
select target set T . For each target t ∈ T , its demand for item
i ∈ C follows a Zipf distribution with parameter 1.2.

0

1 2

(a) MAN

1

2 3 4

0

5 6 7 9 11 12 138 10

(b) Tree

Fig. 4: Topologies for two toy examples, where each solid
line represents a unicast transmission, the dotted lines denote
hyperedges, and green nodes/leaves denote targets.

ER grid HC expander SW BA WS geant abilene dtelekom
Topology

100

101

102

103

No
rm

. C
os

t

SCC RC-SMANT RC-CT SMAN CC

Fig. 5: Transmission costs of various caching algorithms
(normalized by CC costs, shown in column “Cost” of Table I)
over different topologies. Our proposed CC consistently out-
performs competitors by several orders of magnitude.

Settings for Hierarchy Topologies. In order to provide some
visualization intuitions and compare to the most related work
from Maddah-Ali and Niesen [10], we show how schemes
work over these two simpler hierarchy topologies. As shown in
Fig. 4, green leaves represent targets T ⊆ V . Furthermore, we
capture the broadcasting nature in [10] via dotted hyperedges.
For the MAN, we refer the interested readers to App. A. For
the Tree topology, we set the cache size for each layer from
the server to the leaf to be cv = (20, 8, 4, 2). The edge
penalty vector between these ordered layers from the server
to the leaf nodes is me(ze) = (ze, z

2
e , z

4
e), respectively; note

that the cost functions of transmission from the same layer
is fixed and identical. This is natural: in wireless systems, the
server typically has a higher bandwidth or higher transmission
power than the leaves, thus penalty of transmission with higher
bandwidth/power is lower.

B. Joint Caching, Delivery, and Cross-coding Algorithms

We implement our framework and several competitors:

• Coded Caching (CC) is our proposed scheme, consisting
of both self-coded and cross-coded traffic management.

• Self-Coded Caching (SCC) consists of only self-coded
traffic. SCC optimizes Problem (13) by setting all cross
coded variables to 0.

• ‘Simulated’ Maddah-Ali and Niesen (SMAN) is a simu-
lated version of the scheme introduced by Maddah-Ali
and Niesen [10]. We first take the maximum rate of each
file across all targets as the demand rate, so that the sym-
metry is guaranteed, as in [10]. Then, we optimize both
cache and transmission by solving a “uniform demand”
version of Prob. (13). Note that the original scheme
from [10] is symmetrically designed so as to maximize
multicasting opportunities and does not optimize caching.

6

In contrast, we extend their scheme using an asymmetric
demand model under a flow-based coded caching scheme,
and optimize caches accordingly.

• Random Caching and Coded Transmission (RC-CT) con-
sists of two steps. First, we set cache rates proportional
to file populations. Second, given fixed cache rates, we
optimize Problem (13) only w.r.t. ze.

• Random Caching and SMAN Transmission (RC-SMANT)
also consists of two steps similar to RC-CT. The only
difference is: before the second step, RC-SMANT takes
the maximum rate of each file across all targets as the
demand rate, like SMAN.

We implement all these schemes using the CVXPY toolbox to
solve constituent convex optimization problems. We pledge to
make our code and data publicly available.

C. Results for General Topologies

We present normalized cost results in Fig. 5. The normalized
cost is the transmission cost normalized by the one yielded by
CC, shown in the last column of Table I. In all topologies, our
CC consistently outperforms all competitors by several orders
of magnitude. SCC always performs the worst, which verifies
the importance of cross coding. Also, schemes considering
asymmetric demands (CC and RC-CT) always have better
performance than ones only considering symmetric demands
(SMAN and RC-SMANT), correspondingly. This is expected,
as symmetric demands pessimistically assume they need to
uniformly serve the maximum of asymmetric demands.

D. Tree Topology

We next consider the Tree network topology with four
multi-hop layers, as shown in Fig. 4-(b). In the Tree topology,
solid lines between nodes represent unicast transmissions (e.g.,
from the server to the radio area network), and the dotted
lines represent the hyperedges from the radio area network
to the leaves (e.g., wireless on tablet, phone). The ordering
of layers is from root to leaf. The demand for the Tree
network is modeled by a Zipf distribution, where the catalog
size is |C| = 20 and the Zipf exponent is 1.2. Although the
demands from different targets all follow the same distribution,
they might take different values. We group files for easier
visualization and denote the collection of the 10 most popular
files by h (stands for High popular), and the least popular 10
files by l (stands for Low popular). There are 5 possible coded
combinations denoted by the set {l, h, (l, h), (l, l), (h, h)},
where l and h denote the self-coded files, (l, h) represents the
cross-coding across l and h files, and so forth.
Transmission and Cache Placement. In Fig. 6, we illustrate
the performance across layers. In this setting, we observe that
the combination of the edge caches and edge transmissions is
not sufficient to meet the demands, i.e., all intermediate caches
and transmissions help satisfy the demands. Our CC has the
least transmission costs. We list the total transmission costs
at the captions of the Figs. 6. Our CC scheme achieves more
than 3× gains compared to SMAN, while achieving more than
250× gains compared to SCC.

l h (l,h) (l,l) (h,h)

101

La
ye

r 0
ca

ch
e

l h (l,h) (l,l) (h,h)

10 1

100

La
ye

r 1
ca

ch
e

l h (l,h) (l,l) (h,h)

10 1

La
ye

r 2
ca

ch
e

l h (l,h) (l,l) (h,h)
Item

10 3

10 1

La
ye

r 3
ca

ch
e

CC SMAN SCC

(a) Cache

l h (l,h) (l,l) (h,h)

10 1

100

La
ye

r 0
lo

ad

l h (l,h) (l,l) (h,h)

10 1

100

101

La
ye

r 1
lo

ad

l h (l,h) (l,l) (h,h)
Item

10 3

10 1

101

La
ye

r 2
lo

ad

CC SMAN SCC

(b) Transmission

Fig. 6: (a) Cache storage and (b) transmission load for different
algorithms with symmetric demands. The indices l and h
represent low and high popularity files. The total transmission
cost of three algorithms is 3.2×104, 1.1×105 and 8.7×106,
respectively.

1.0 1.2 1.4 1.6 1.8 2.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50

la
ye

r 0
 c

os
t

1.0 1.2 1.4 1.6 1.8 2.0
0

2

4

6

8

10
la

ye
r 1

 c
os

t

1.0 1.2 1.4 1.6 1.8 2.0
Penalty Multiplier

0

2000

4000

6000

la
ye

r 2
 c

os
t

SCC SMAN CC

(a) Cost

1.0 1.2 1.4 1.6 1.8 2.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50

la
ye

r 0
 lo

ad

1.0 1.2 1.4 1.6 1.8 2.0
0

1

2

3

4

5

la
ye

r 1
 lo

ad

1.0 1.2 1.4 1.6 1.8 2.0
Penalty Multiplier

15

20

25

30

35

40

la
ye

r 2
 lo

ad

SCC SMAN CC

(b) Transmission Load

Fig. 7: Cost and transmission load with different cost func-
tions, where larger penalty multiplier indicates higher penal-
ization for transmission.

Effect of Edge Load Penalties. In Fig. 7 we consider the
cost across each layer with varying edge penalty. This helps
illustrate how the relative cost of delivery versus caching
affects the behavior of the aggregate cost of the scheme.
The label penalty multiplier PenaltyMultiplier on the x-axis
is a coefficient in transmission cost function me(ze), where
edges in layer i have me(ze) = zPenaltyMultiplieri

e . With the
increment of penalty multiplier, the load of edge on layer
2 stays almost the same, while the load on the lower layer
edges increases. The increment rate of SCC approach grows
the fastest, then SMAN, and our CC scheme grows the slowest.

VI. CONCLUSIONS

We proposed a flow-based coded caching framework. To
the best of our knowledge, this is the first comprehensive

7

work that considers asymmetric demand models, a mixture
of unicast and multicast transmissions, self-coded and cross-
coded delivery, via minimizing the joint cost of delivery and
placement in general wireless network topologies. Our numeri-
cal experiments show that, for various arbitrary topologies, our
coding scheme outperforms the widely accepted algorithms by
several orders of magnitude. Moreover, under cross-coding,
we observe a 2× reduction in transmission costs versus the
self-coded model in Maddah-Ali and Niesen topology. Further-
more, the reduction of delivery cost is even more dramatic (up
to more than 3× versus the Maddah-Ali and Niesen scheme
and up to more than 250× versus self-coded) in hierarchical
(tree) transmission models.

Extensions of this work include devising a general delivery
scheme, where the link costs are coupled, accounting for, e.g.,
interference, and providing a constant factor approximation
of the optimal solution of the joint placement and delivery
problem without imposing a decoding schedule. Designing
adaptive and distributed techniques is critical, especially when
the demand is dynamic and unknown. Other extensions include
designing joint caching and routing schemes and scheduling
transmissions via incorporating congestion.

REFERENCES

[1] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, Sep. 2013.

[2] S. Ioannidis and E. M. Yeh, “Adaptive caching networks with optimality
guarantees,” in Proc., ACM Sigmetrics, Antibes, France, Jun. 2016, pp.
113 – 124.

[3] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” IEEE/ACM Trans. Netw., vol. 26, no. 2, pp. 737–750, Feb.
2018.

[4] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal routing
and content caching in heterogeneous networks,” in Proc., IEEE Info-
com, Hong Kong, Apr. 2015, pp. 936–944.

[5] S. Ioannidis and E. M. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” in Proc., ACM Conf. Inf.-Centric Netw.,
Berlin, Germany, Sep. 2017.

[6] A. Khalesi and P. Elia, “Multi-user linearly-separable distributed com-
puting,” arXiv preprint arXiv:2206.11119, Jun. 2022.

[7] M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh, “Kelly cache
networks,” in Proc., IEEE Infocom, Honolulu, HI, Apr. 2019.

[8] D. Malak, F. V. Mutlu, J. Zhang, and E. M. Yeh, “Transmission delay
minimization via joint power control and caching in wireless HetNets,”
arXiv preprint arXiv:2105.14380, May 2021.

[9] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” J. Comb.
Optim., vol. 8, no. 3, pp. 307–328, Sep. 2004.

[10] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, Mar. 2014.

[11] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Trans. Inf. Theory, vol. 65, no. 1, pp. 647–663, Sep. 2018.

[12] N. Prakash, V. Abdrashitov, and M. Médard, “The storage versus repair-
bandwidth trade-off for clustered storage systems,” IEEE Trans. Inf.
Theory, vol. 64, no. 8, pp. 5783–5805, Feb. 2018.

[13] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in Proc., IEEE Inf. Theory Wksh., Cambridge, UK,
Sep. 2016, pp. 161–165.

[14] Y. Wang and V. Friderikos, “Energy-efficient proactive caching with
multipath routing,” Computer Networks, vol. 216, p. 109272, 2022.

[15] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Aug. 2010.

[16] M. Aktaş, G. Joshi, S. Kadhe, F. Kazemi, and E. Soljanin, “Service rate
region: A new aspect of coded distributed system design,” IEEE Trans.
Inf. Theory, vol. 67, no. 12, pp. 7940–7963, Oct. 2021.

[17] N. Nicolaou, V. Cadambe, N. Prakash, K. Konwar, M. Medard, and
N. Lynch, “ARES: adaptive, reconfigurable, erasure coded, atomic
storage,” pp. 2195–2205, Jul. 2019.

[18] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable
communication over packet networks,” Physical Commun., vol. 1, no. 1,
pp. 3–20, Mar. 2008.

[19] D. S. Lun, N. Ratnakar, R. Koetter, M. Médard, E. Ahmed, and H. Lee,
“Achieving minimum-cost multicast: A decentralized approach based
on network coding,” in Proc. IEEE Joint Conf. Computer and Commun.
Socs., vol. 3, Miami, FL, Mar. 2005, pp. 1607–1617.

[20] Y. Cui, M. Médard, E. Yeh, D. Leith, and K. R. Duffy, “Optimization-
based linear network coding for general connections of continuous
flows,” IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2033–2047, Sep.
2018.

[21] A. Eryilmaz, D. S. Lun, and B. Swapna, “Control of multi-hop commu-
nication networks for inter-session network coding,” IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 1092–1110, Jan. 2011.

[22] Y.-P. Hsu, N. Abedini, N. Gautam, A. Sprintson, and S. Shakkottai,
“Opportunities for network coding: To wait or not to wait,” IEEE/ACM
Trans. Netw., vol. 23, no. 6, pp. 1876–1889, Sep. 2014.

[23] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in
wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp.
849–869, Feb. 2016.

[24] U. Niesen, D. Shah, and G. W. Wornell, “Caching in wireless networks,”
IEEE Trans. Inf. Theory, vol. 58, no. 10, pp. 6524–6540, Jun. 2012.

[25] D. Malak, M. Al-Shalash, and J. G. Andrews, “Optimizing content
caching to maximize the density of successful receptions in device-to-
device networking,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4365–
4380, Oct. 2016.

[26] J. Hachem, N. Karamchandani, S. Diggavi, and S. Moharir,
“Coded caching for heterogeneous wireless networks,” arXiv preprint
arXiv:2006.01025, Jun. 2020.

[27] U. J. Ferner, P. Sadeghi, N. Aboutorab, and M. Médard, “Scheduling
advantages of network coded storage in point-to-multipoint networks,”
in Proc., IEEE Int. Symp. Netw. Coding, Aalborg Oest, Denmark, Jun.
2014, pp. 1–6.

[28] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc., IEEE Infocom, San Diego, CA,
Mar. 2010.

[29] M. Mahdian and E. M. Yeh, “Throughput and delay scaling of content-
centric ad hoc and heterogeneous wireless networks,” IEEE/ACM Trans.
Netw., vol. 25, no. 5, pp. 3030–3043, 2017.

[30] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for
data placement problems,” SIAM J. Comput., vol. 38, no. 4, pp. 1411–29,
Aug. 2008.

[31] C. Fragouli and E. Soljanin, Network coding fundamentals. Now
Publishers Inc, 2007.

[32] E. M. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “Vip: A
framework for joint dynamic forwarding and caching in named data
networks,” in Proc., ACM Conf. Inf.-Centric Netw., Paris, France, Sep.
2014.

[33] M. Mahdian and E. Yeh, “Mindelay: Low-latency forwarding and
caching algorithms for information-centric networks,” arXiv preprint
arXiv:1710.05130, Oct. 2017.

[34] J. Li, T. K. Phan, W. K. Chai, D. Tuncer, G. Pavlou, D. Griffin, and
M. Rio, “Dr-cache: Distributed resilient caching with latency guaran-
tees,” in Proc., IEEE Infocom, Honolulu, HI, Apr. 2018, pp. 441–449.

[35] N. Abedini and S. Shakkottai, “Content caching and scheduling in
wireless networks with elastic and inelastic traffic,” IEEE/ACM Trans.
Netw., vol. 22, no. 3, pp. 864–874, May 2013.

[36] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Trans.
Inf. Theory, vol. 64, no. 2, pp. 1281–1296, Dec. 2017.

[37] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in
wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp.
849–869, Dec. 2015.

[38] K. Wan and G. Caire, “On coded caching with private demands,” IEEE
Trans. Inf. Theory, vol. 67, no. 1, pp. 358–372, Nov. 2020.

[39] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–28, Sep. 2017.

[40] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.
Inf. Forensics Secur., vol. 15, pp. 2722–2734, Feb. 2020.

[41] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “On optimal load-
memory tradeoff of cache-aided scalar linear function retrieval,” IEEE
Trans. Inf. Theory, vol. 67, no. 6, pp. 4001–4018, Mar. 2021.

[42] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[43] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge university press, 2004.

[44] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” in Proc., Annu. ACM Symp. Theory Comp., 2000, pp. 163–170.

[45] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[46] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[47] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Relatório técnico, Telecom
ParisTech, pp. 1–6, 2011.

8

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 30.0

0.2

0.4
0

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 30.0

0.1

0.2

0.3

1

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 3
Item

0.0

0.2

0.4
2

(a) Cache

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 30.00

0.02

0.04

0.06

0.08

0.10

(0, 1)

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 3
Item

0.00

0.02

0.04

0.06

0.08

0.10

(0, 2)

(b) Transmission

Fig. 8: Cache and transmission strategies by our scheme CC .
The cost incurred by the edge load is me(ze) = z3e , and the
demand is asymmetric with ∆ = 0.6.

APPENDIX A
MAN TOPOLOGY

To further investigate the performance of CC, we explore
its performance on the fairly simple layered topology of MAN
[10] as illustrated in Fig. 4(a). The storage sizes of targets are
identical, i.e., c1 = c2 = 0.8, and the storage size of the server
(node 0) is c0 = |C| = 4. The transmission cost function is
me(ze) = z3e . Modifying our optimization problem in (13),
the MAN scheme can be obtained by setting the storage cost
as

∑
v∈V wv(xv) = 0, self-coded and cross-coded traffic as

ρte,i = 0, ρte,(i,j) = ρ, the storage variables to be xv,i = xv ,
xv,(i,j) = 0, and demands at targets as ξtv,i = 0, and ξtv,(i,j) =

ξt(i,j). Special cases of our model include the scenario where
every request is symmetric, as in [10]. We consider a set of
files C = {0, 1, 2, 3} and their cross-codings. To be consistent
with the experimental setting in [10], we lump files 0 and 1 as
group 1, and files 2 and 3 as group 2. We use the parameter
∆ = λ1,1−λ2,1 = λ2,2−λ1,2 to denote the difference between
user request rates, i.e., capturing the demand asymmetry. Note
that the first subscripts denote the target indices and the second
subscript represent group indices. Thus, ∆ = 0 when demands
are identical and ∆ grows with the asymmetry in the demand.
Transmission and Cache Placement. In Figs. 8-(a) and 8-(b),
we show the patterns of cache placement and transmission
generated by our algorithm CC, respectively, where λ1,1 =
0.8 and λ1,2 = 0.2 and the order is reversed for node 2. As
demands are asymmetric, i.e., ∆ = 0.6, the caches of node 1
and 2 prefer groups 1 and 2, respectively.

Similarly, in Figs. 9-(a) and 9-(b), we investigate the deliv-
ery and the placement results for the SMAN scheme. Compared
with Fig. 8, our algorithm CC satisfies asymmetric demand
with fewer transmissions. Just as expected, as SMAN needs to
use a higher demand rate to ensure symmetry so that SMAN
is solvable.

In Figs. 10-(a) and 10-(b), we consider SCC. Note that x-
axis only includes self-coded files. Contrasting the results with
Fig. 8, we observe that self-coded transmissions require more
than 2× caching at the server versus the cross-coded model
as self-coding cannot exploit the mixing of files. Furthermore,
the transmission cost of self-coded scheme is more than 4×
compared with the cross-coded scheme.

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 30.0

0.2

0.4

0

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 30.00

0.05

0.10
1

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 3
Item

0.00

0.05

0.10
2

(a) Cache

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 30.00

0.05

0.10

0.15

(0, 1)

0 (0, 1)(0, 2)(0, 3) 1 (1, 2)(1, 3) 2 (2, 3) 3
Item

0.00

0.05

0.10

0.15

(0, 2)

(b) Transmission

Fig. 9: Cache and transmission strategies by SMAN. The cost
incurred by the edge load is me(ze) = z3e , and ∆ = 0.6.

0 1 2 30.0

0.5

1.0
0

0 1 2 30.0

0.2

0.4
1

0 1 2 3
Item

0.0

0.2

0.4
2

(a) Cache

0 1 2 30.0

0.1

0.2

0.3

0.4
(0, 1)

0 1 2 3
Item

0.0

0.1

0.2

0.3

0.4
(0, 2)

(b) Transmission

Fig. 10: Cache and transmission strategies by SCC. The cost
incurred by the edge load is me(ze) = z3e , and ∆ = 0.6.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Co
st

SCC
SMAN
CC

(a) Demand asymmetry

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
cv

0

1

2

3

4

Co
st

SCC
SMAN
CC

(b) Different storage ca-
pacities

Fig. 11: Costs of different algorithms with (a) different de-
mand distributions, and (b) different storage capacities. Our
algorithm CC always incur the least costs.

Effect of Demand Asymmetry. We evaluate the role of the
demand distribution on the total cost of delivery for all three
algorithms, shown in Fig. 11-(a). While it is intuitive that
the cost increases with asymmetry, we observe that the rate
of increase for CC model is slower than that for SMAN.
This is because our model can not only leverage multicasting
opportunities but also optimize the delivery cost of unicast
transmissions.
Effect of Storage Capacities. In Fig. 11-(b), we contrast the
costs of the above schemes versus the storage size cv , which is
the same for both leaves (c1 = c2 = cv). Cost of our scheme
decreases fastest with increasing cv , in comparison with other
schemes shown. Furthermore, when node capacities are large
enough (cv > 1.5 for CC and cv > 2 for other models), no
transmission is needed to satisfy demands.

9

